CELLULAR AUTOMATA FOR CIREBON CITY LAND COVER AND DEVELOPMENT PREDICTION

Authors

  • Ina Helena Agustina Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA
  • Riswandha Risang Aji Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA
  • Irland Fardani Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA
  • Gina Puspitasari Rochman Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA
  • Astri Mutia Ekasari Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA
  • Fhanji Alain Jauzi Mohmed Department of Urban and Regional Planning, UNIVERSITAS ISLAM BANDUNG INDONESIA

DOI:

https://doi.org/10.21837/pm.v20i20.1080

Keywords:

cellular automata, Cirebon, city development, landcover, prediction

Abstract

Land changes in urban areas are a common thing. Along with the increase in economic activity, the population also increased and resulted in changes in land use. This results in uncomfortable, unsafe and inefficient urban conditions. This problem can be anticipated by predicting changes in land cover, from the result of prediction of landcover, the direction of urban growth will be known. The purpose of this research is to analyse and modelling land use changes and to predict the urban growth. One methodology for modelling land cover is to use the Cellular Automata model. Using land cover data from Landsat Satellite Imagery in 1999 and 2009, it can predict that land cover in 2019 until 2031, after calculating the validity value using a kappa accuracy test of 0.79. Results of the model are that development of the city of Cirebon leads to the southern part of the District of Harjamukti. It happens because, in the area of Harjamukti District, there is a lot of lands that can convert into developed land.

Downloads

Download data is not yet available.

References

Beuchat, J. L., & Haenni, J. O. (2000). Von Neumann’s 29-state cellular automaton: A hardware implementation. IEEE Transactions on Education, 43(3), 300–308. https://doi.org/10.1109/13.865205 DOI: https://doi.org/10.1109/13.865205

Bose, A., & Chowdhury, I. R. (2020). Monitoring and modeling of spatio-temporal urban expansion and land-use/land-cover change using markov chain model: a case study in Siliguri Metropolitan area, West Bengal, India. Modeling Earth Systems and Environment, 6(4), 2235–2249. https://doi.org/10.1007/s40808-020-00842-6 DOI: https://doi.org/10.1007/s40808-020-00842-6

Cao, Y., Li, F., Xi, X., van Bilsen, D. J. C., & Xu, L. (2021). Urban livability: Agentbased simulation, assessment, and interpretation for the case of Futian District, Shenzhen. Journal of Cleaner Production, 320(88). https://doi.org/10.1016/j.jclepro.2021.128662 DOI: https://doi.org/10.1016/j.jclepro.2021.128662

Cavalcante, A. L. B., Borges, L. P. de F., Lemos, M. A. da C., Farias, M. M. de, & Carvalho, H. S. (2021). Modelling the spread of covid-19 in the capital of Brazil using numerical solution and cellular automata. Computational Biology and Chemistry, 94(June). https://doi.org/10.1016/j.compbiolchem.2021.107554 DOI: https://doi.org/10.1016/j.compbiolchem.2021.107554

Ceballos-Silva, A., & López-Blanco, J. (2003). Delineation of suitable areas for crops using a Multi-Criteria Evaluation approach and land use/cover mapping: A case study in Central Mexico. Agricultural Systems, 77(2), 117–136. https://doi.org/10.1016/S0308-521X(02)00103-8 DOI: https://doi.org/10.1016/S0308-521X(02)00103-8

Chatterjee, U., & Majumdar, S. (2021). Impact of land use change and rapid urbanization on urban heat island in Kolkata city: A remote sensing based perspective. Journal of Urban Management, September. https://doi.org/10.1016/j.jum.2021.09.002 DOI: https://doi.org/10.1016/j.jum.2021.09.002

Collados-Lara, A. J., Pardo-Igúzquiza, E., & Pulido-Velazquez, D. (2021). Assessing the impact of climate change – and its uncertainty – on snow cover areas by using cellular automata models and stochastic weather generators. Science of the Total Environment, 788, 147776. https://doi.org/10.1016/j.scitotenv.2021.147776 DOI: https://doi.org/10.1016/j.scitotenv.2021.147776

Darmansyah, A., Rochana, S. H., Sutardi, A., & Zuraida, U. (2014). The New Growth Centres and Strategy for Building and Accelerating Agribusiness Development in Cirebon Regency, Indonesia. Procedia - Social and Behavioral Sciences, 115(Iicies 2013), 296–304. https://doi.org/10.1016/j.sbspro.2014.02.437 DOI: https://doi.org/10.1016/j.sbspro.2014.02.437

Elsawahli, H., Ahmad, F., & Ali, A. S. (2016). Demographic transition and sustainable communities in Malaysia. Planning Malaysia, 5, 39–48. DOI: https://doi.org/10.21837/pm.v14i5.191

https://doi.org/10.21837/pmjournal.v14.i5.191 DOI: https://doi.org/10.21837/pmjournal.v14.i5.191

Fahmi, F. Z., Hudalah, D., Rahayu, P., & Woltjer, J. (2014). Extended urbanization in small and medium-sized cities: The case of Cirebon, Indonesia. Habitat International, 42, 1–10. https://doi.org/10.1016/j.habitatint.2013.10.003 DOI: https://doi.org/10.1016/j.habitatint.2013.10.003

Fardani, I. (2020). Landuse change prediction model based on Cellular Automata (CA) method in Bandung City. Journal of Physics: Conference Series, 1469(1). https://doi.org/10.1088/1742-6596/1469/1/012030 DOI: https://doi.org/10.1088/1742-6596/1469/1/012030

Huilei, L., Jian, P., Yanxu, L., & Yi’na, H. (2017). Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecological Indicators, 82(May), 50–60. https://doi.org/10.1016/j.ecolind.2017.06.032 DOI: https://doi.org/10.1016/j.ecolind.2017.06.032

Khalili Araghi, S., & Stouffs, R. (2015). Exploring cellular automata for high density residential building form generation. Automation in Construction, 49(PA), 152–162. https://doi.org/10.1016/j.autcon.2014.10.007 DOI: https://doi.org/10.1016/j.autcon.2014.10.007

Koroso, N. H., Lengoiboni, M., & Zevenbergen, J. A. (2021). Urbanization and urban land use efficiency: Evidence from regional and Addis Ababa satellite cities, Ethiopia. Habitat International, 117(September), 102437. https://doi.org/10.1016/j.habitatint.2021.102437 DOI: https://doi.org/10.1016/j.habitatint.2021.102437

Kullo, E. D., Forkuo, E. K., Biney, E., Harris, E., & Quaye-Ballard, J. A. (2021). The impact of land use and land cover changes on socioeconomic factors and livelihood in the Atwima Nwabiagya district of the Ashanti region, Ghana. Environmental Challenges, 5(July), 100226. https://doi.org/10.1016/j.envc.2021.100226 DOI: https://doi.org/10.1016/j.envc.2021.100226

Kyriakopoulou, E., & Picard, P. M. (2021). On the design of sustainable cities: Local traffic pollution and urban structure. Journal of Environmental Economics and Management, 107, 102443. https://doi.org/10.1016/j.jeem.2021.102443 DOI: https://doi.org/10.1016/j.jeem.2021.102443

Liaqat, M. U., Mohamed, M. M., Chowdhury, R., Elmahdy, S. I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater for Sustainable Development, 14(August 2019), 100587. https://doi.org/10.1016/j.gsd.2021.100587 DOI: https://doi.org/10.1016/j.gsd.2021.100587

Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egyptian Journal of Remote Sensing and Space Science, 20(1), 103–116. https://doi.org/10.1016/j.ejrs.2016.08.002 DOI: https://doi.org/10.1016/j.ejrs.2016.08.002

Mouratidis, K., & Yiannakou, A. (2021). What makes cities livable? Determinants of neighborhood satisfaction and neighborhood happiness in different contexts. Land Use Policy, April, 105855. https://doi.org/10.1016/j.landusepol.2021.105855 DOI: https://doi.org/10.1016/j.landusepol.2021.105855

Nirwansyah, A. W., & Braun, B. (2021). Assessing the degree of tidal flood damage to salt harvesting landscape using synthetic approach and GIS - Case study: Cirebon, West Java. International Journal of Disaster Risk Reduction, 55(July 2020), 102099. https://doi.org/10.1016/j.ijdrr.2021.102099 DOI: https://doi.org/10.1016/j.ijdrr.2021.102099

Ortega, A., Vassallo, J. M., & Pérez, J. I. (2021). Modelling some equality and social welfare impacts of road tolling under conditions of traffic uncertainty. Research in Transportation Economics, xxxx. https://doi.org/10.1016/j.retrec.2021.101110 DOI: https://doi.org/10.1016/j.retrec.2021.101110

Pérez-Hoyos, A., Udías, A., & Rembold, F. (2020). Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa. International Journal of Applied Earth Observation and Geoinformation, 88(August 2019), 102064. https://doi.org/10.1016/j.jag.2020.102064 DOI: https://doi.org/10.1016/j.jag.2020.102064

Piskin, M., Hewings, G. J. D., & Hannum, C. M. (2020). Synergy effects of highway investments on the Turkish economy: An application of an integrated transport network with a multiregional CGE model. Transport Policy, 95(October 2019), 78–92. https://doi.org/10.1016/j.tranpol.2020.05.011 DOI: https://doi.org/10.1016/j.tranpol.2020.05.011

Poku-Boansi, M. (2021). Contextualizing urban growth, urbanisation and travel behaviour in Ghanaian cities. Cities, 110(August 2020), 103083. https://doi.org/10.1016/j.cities.2020.103083 DOI: https://doi.org/10.1016/j.cities.2020.103083

Samat, N., Mahamud, M. A., Rashid, S. M. R. A., Elhadary, Y., & Noor, N. M. (2019). Urbanisation beyond its core boundary and its impact on the communities in george town conurbation, Malaysia. Planning Malaysia, 17(2), 38–49. https://doi.org/10.21837/pmjournal.v17.i10.627 DOI: https://doi.org/10.21837/pm.v17i10.627

Schielein, J., Ponzoni Frey, G., Miranda, J., Souza, R. A. de, Boerner, J., & Henderson, J. (2021). The role of accessibility for land use and land cover change in the Brazilian Amazon. Applied Geography, 132(December 2020). https://doi.org/10.1016/j.apgeog.2021.102419 DOI: https://doi.org/10.1016/j.apgeog.2021.102419

Wu, D., Liu, J., Wang, S., & Wang, R. (2010). Simulating urban expansion by coupling a stochastic cellular automata model and socioeconomic indicators. Stochastic Environmental Research and Risk Assessment, 24(2), 235–245. https://doi.org/10.1007/s00477-009-0313-3 DOI: https://doi.org/10.1007/s00477-009-0313-3

Xu, Z., Jiao, L., Lan, T., Zhou, Z., Cui, H., Li, C., Xu, G., & Liu, Y. (2021). Mapping hierarchical urban boundaries for global urban settlements. International Journal of Applied Earth Observation and Geoinformation, 103, 102480. https://doi.org/10.1016/j.jag.2021.102480 DOI: https://doi.org/10.1016/j.jag.2021.102480

Zainudin, L., Mohd Yusoff, Z., Sulaiman, S. A., & Abu, J. (2021). Land Conversion Processes and Local Community Assessment in the District of Petaling. Planning Malaysia, 19(4), 185–196. https://doi.org/10.21837/pm.v19i18.1044 DOI: https://doi.org/10.21837/pm.v19i18.1044

Downloads

Published

2022-04-18

How to Cite

Agustina, I. H., Risang Aji, R., Fardani, I., Rochman, G. P., Ekasari, A. M., & Jauzi Mohmed, F. A. (2022). CELLULAR AUTOMATA FOR CIREBON CITY LAND COVER AND DEVELOPMENT PREDICTION. PLANNING MALAYSIA, 20(20). https://doi.org/10.21837/pm.v20i20.1080