LAND SUBSIDENCE DYNAMICS IN MALAYSIA BASED ON TIME-SERIES VERTICAL DEFORMATION USING MODIFIED D-INSAR SENTINEL-1
DOI:
https://doi.org/10.21837/pm.v21i29.1374Keywords:
Land Subsidence, Time-Series Vertical Deformation, Modified D-InSAR, 16 cities of MalaysiaAbstract
Land subsidence in urban areas is geohazard that can be caused by tectonic movements, changes in aquifer networks, or anthropogenic activities such as excessive groundwater extraction, mining, tunnelling, and plantations. The degree of land subsidence can be monitored using time-series vertical deformation data extracted from Sentinel-1 satellite imagery using the modified D-InSAR method. This study aims to determine the land subsidence dynamics of 16 cities in Malaysia based on time-series vertical deformation data, including Kota Bahru, Kuala Terengganu, George Town and Butterworth, Alor Setar, Kangar, Ipoh, Seremban, Malacca, Kuala Lumpur, Putra Jaya, Shah Alam, Kuantan, Johor Bahru, Kinabalu, Bandar Labuan (Victoria), and Kuching. The time-series vertical deformation data used in this study were extracted between 2014-2022. Negative values of vertical deformation indicate that land subsidence is occurring, while positive values of vertical deformation are indicative of regional uplift. The overall rate of land subsidence in Malaysia is between -0.5 cm to -6.0 cm, while the average uplift rate is between +0.5 cm to +4.5 cm. An analysis of the data extracted reveals that the city that is most vulnerable to land subsidence is Johor Bahru, followed by Kuala Terengganu, Seremban, Kuala Lumpur, Shah Alam, Malacca, and Kuantan, while the city that has the lowest risk of land subsidence is Kangar. In contrast, cities that are vulnerable to regional uplift are Kinabalu and Bandar Labuan (Victoria). The results of this study can be used to guide urban planning initiatives, allowing them to consider any threats that might be posed by land subsidence.
Downloads
References
Ardha, M., Suhadha, A. G., Julzarika, A., & Yudhatama, D. (2021). Utilization of Sentinel-1 satellite imagery data to support land subsidence analysis in DKI Jakarta, Indonesia. J. Degrade. Min. Land Manage, 8(2), 2587–2593. https://doi.org/10.15243/jdmlm.2021.082.2587 DOI: https://doi.org/10.15243/jdmlm.2021.082.2587
Devanthéry, N., Crosetto, M., Cuevas-González, M., Monserrat, O., Barra, A., & Crippa, B. (2016). Deformation Monitoring Using Persistent Scatterer Interferometry and Sentinel-1 SAR Data. Procedia Computer Science, 100, 1121–1126. https://doi.org/10.1016/j.procs.2016.09.263 DOI: https://doi.org/10.1016/j.procs.2016.09.263
ESA. (2019). Sentinel Satellites. European Space Agency. https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview4
Ferretti, A., Guarnieri, A. M., Prati, C., & Rocca, F. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. In K. Fletcher (Ed.), Proceedings of the National Academy of Sciences of the United States of America. European Space Agency, ESA Publication ESTEC Postbus 299 220 AG Noordwijk The Netherlands.
Julzarika, A., Aditya, T., Subaryono, S., & Harintaka, H. (2021). The latest dtm using InSAR for dynamics detection of Semangko fault-indonesia. Geodesy and Cartography (Vilnius), 47(3), 118–130. https://doi.org/10.3846/gac.2021.12621 DOI: https://doi.org/10.3846/gac.2021.12621
Julzarika, A., Aditya, T., Subaryono, S., & Harintaka, H. (2022). Dynamics Topography Monitoring in Peatland Using the Latest Digital Terrain Model. Journal of Applied Engineering Science, 20(1), 246–253. https://doi.org/10.5937/jaes0-31522 DOI: https://doi.org/10.5937/jaes0-31522
Mohamed, A., & Gonçalvès, J. (2021). Hydro-geophysical monitoring of the North Western Sahara Aquifer System’s groundwater resources using gravity data. Journal of African Earth Sciences, 178(March). https://doi.org/10.1016/j.jafrearsci.2021.104188 DOI: https://doi.org/10.1016/j.jafrearsci.2021.104188
Motagh, M., Shamshiri, R., Haghshenas Haghighi, M., Wetzel, H. U., Akbari, B., Nahavandchi, H., Roessner, S., & Arabi, S. (2017). Quantifying groundwater exploitation induced subsidence in the Rafsanjan plain, southeastern Iran, using InSAR time-series and in situ measurements. Engineering Geology, 218. https://doi.org/10.1016/j.enggeo.2017.01.011 DOI: https://doi.org/10.1016/j.enggeo.2017.01.011
Muhammad, S. B., Abubakar, S., Abir, I. A., & Mohammed, A. (2021). Land Subsidence Studies of Seberang Perai Malaysia, By Integrating Remote Sensing Technique and Resistivity Survey Method. IOSR Journal of Applied Geology and Geophysics, 8(1), 41–47. https://doi.org/10.9790/0990-0801034147
Rucci, A., Ferretti, A., Monti Guarnieri, A., & Rocca, F. (2012). Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sensing of Environment, 120, 156–163. https://doi.org/10.1016/j.rse.2011.09.030 DOI: https://doi.org/10.1016/j.rse.2011.09.030
Stampoulis, D., Reager, J. T., David, C. H., Andreadis, K. M., Famiglietti, J. S., Farr, T. G., Trangsrud, A. R., Basilio, R. R., Sabo, J. L., Osterman, G. B., Lundgren, P. R., & Liu, Z. (2019). Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth. Advances in Water Resources, 128(November 2018), 13–27. https://doi.org/10.1016/j.advwatres.2019.04.004 DOI: https://doi.org/10.1016/j.advwatres.2019.04.004
Suhadha, A. G., & Julzarika, A. (2022). Dynamic Displacement using DInSAR of Sentinel-1 in Sunda Strait. Trends in Sciences, 19(13), 4623. https://doi.org/10.48048/tis.2022.4623 DOI: https://doi.org/10.48048/tis.2022.4623
Suhadha, A. G., Julzarika, A., Ardha, M., & Chusnayah, F. (2021). Monitoring Vertical Deformations of the Coastal City of Palu after Earthquake 2018 Using Parallel-SBAS. Proceedings - 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2021, March. https://doi.org/10.1109/APSAR52370.2021.9688380 DOI: https://doi.org/10.1109/APSAR52370.2021.9688380
Suratman, S. (2012). Groundwater-What and Why? Conference Groundwater-What, Why, Where and How?,.
Zhu, L., Gong, H., Li, X., Wang, R., Chen, B., Dai, Z., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193. https://doi.org/10.1016/j.enggeo.2015.04.020 DOI: https://doi.org/10.1016/j.enggeo.2015.04.020
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright & Creative Commons Licence
eISSN: 0128-0945 © Year. The Authors. Published for Malaysia Institute of Planners. This is an open-access article under the CC BY-NC-ND license.
The authors hold the copyright without restrictions and also retain publishing rights without restrictions.