DEVELOPMENT OF CUMULATIVE RAINFALL THRESHOLD FOR LANDSLIDE OCCURRENCE IN PENINSULAR MALAYSIA
DOI:
https://doi.org/10.21837/pm.v21i30.1417Keywords:
Landslide, Rainfall Threshold, Rainfall Cumulative-Duration Threshold, Early Warning System, Peninsular MalaysiaAbstract
Significant issues related to landslides are exposed tremendously in Peninsular Malaysia which have an impact on human beings, animals as well as properties. Reported over twenty-eight significant landslides taking place between 1993 and 2011 which resulted in more than 100 deaths in total. Most of the landslides are the consequences of accumulation of water in underground soil which is connected to rainfall threshold. To establish an empirical Cumulative-Duration threshold through linear regression, analysis of 69 landslide incidents undertaken as well as rainfall data sourced from Public Works Department (PWD) and Department of Irrigation and Drainage (DID) were collected. A comprehensive assessment of all gathered parameters conducted to achieve the confidential purpose of this research which is to determine the threshold for cumulative rainfall event duration which can be utilized in early warning systems and planning for future safety measures. Thus, correlation between rainfall patterns and landslide events are observed. Cumulative rainfall threshold produced an equation E = with identical range of event duration 1 < D < 2448 h which acts as a critical line of landslide occurrences. Validation of threshold was revised using recent landslide cases to acquire new threshold values to represent current rainfall induced landslides. The threshold serves as an early warning mechanism and planning to protect lives and property.
Downloads
References
Berglund, E., Westerling, R., & Lytsy, P. (2017). Housing Type and Neighbourhood Safety Behaviour Predicts Self-rated Health, Psychological Well-being and Freq Zhang S, Pecoraro G, Jiang Q, Calvello M (2023). Definition of Rainfall Thresholds for Landslides Using Unbalanced Datasets: Two Case Studies in Shaanxi Province, China. Water. 15(6):1058. https://doi.org/10.3390/w15061058 DOI: https://doi.org/10.3390/w15061058
Adele Young;Biswa Bhattacharya;Chris Zevenbergen; (2021). A rainfall threshold‐based approach to early warnings in urban data‐scarce regions: A case study of pluvial flooding in Alexandria, Egypt . Journal of Flood Risk Management, (), –. doi:10.1111/jfr3.12702 DOI: https://doi.org/10.1111/jfr3.12702
Yuniawan, R. A., Rifa’i, A., Faris, F., Subiyantoro, A., Satyaningsih, R., Hidayah, A. N., Hidayat, R., Mushthofa, A., Ridwan, B. W., Priangga, E., Muntohar, A. S., Jetten, V. G., Westen, C. J. van, Bout, B. V. den, & Sutanto, S. J. (2022). Revised Rainfall Threshold in the Indonesian Landslide Early Warning System. Geosciences, 12(3), 129. https://doi.org/10.3390/geosciences12030129 DOI: https://doi.org/10.3390/geosciences12030129
Won Young Lee;Seon Ki Park;Hyo Hyun Sung; (2021). The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea . Landslides, (), –. doi:10.1007/s10346-020-01603-3 DOI: https://doi.org/10.1007/s10346-020-01603-3
Sani Ado Kasim, Mohd Suhaili Ismail, Ahmad Mohamed Salim (2020). Cenozoic Stratigraphy, Sedimentation and Tectonic Setting, Onshore Peninsular Malaysia: A Review. Retrieved from : https://www.atlantis-press.com/article/125950023.pdf DOI: https://doi.org/10.2991/aer.k.201229.035
C.S. Hutchison (1989). Geological Evolution of South-East Asia. Vol. 13, Clarendon Press, Oxford, pp. 368.
C.S. Hutchison(1996). South-East Asian oil, gas, coal and mineral deposits. Oxford Univ. Press. DOI: https://doi.org/10.1093/oso/9780198542957.001.0001
I. Metcalfe (2013). Tectonic evolution of the Malay Peninsula. Journal of Asian Earth Sciences, 76, pp. 195-213. DOI: https://doi.org/10.1016/j.jseaes.2012.12.011
P.H., Stauffer (1973). Cenozoic: In Geology of the Malay Peninsula (West Malaysia and Singapore). (Edited by D.J. Gobbett & C.S. Hutchison), Wiley-Interscience, New York, pp. 143–176.
D.J. Gobbett, H.D. Tjia, Tectonic History. In: Gobbett D. J. & Hutchison, C.S. (eds). (1973). Geology of the Malay Peninsula, Wiley-Interscience, New York, pp. 305- 330.
I. Metcalfe (2011). Tectonic Framework and Phanerozoic Evolution of Sundaland. Gondwana Research, 19, pp. 3–21. DOI: https://doi.org/10.1016/j.gr.2010.02.016
C. Makoundi, K. Zaw, R.R, Large, S. Meffre, C.K. Lai, T.G. Hoe (2013). Geology, geochemistry and metallogenesis of the Selinsing gold deposit, central Malaysia, Gondwana Research, 26(1), pp. 241-261. DOI: https://doi.org/10.1016/j.gr.2013.08.023
R.W. van Bemmelen (1949). The Geology of Indonesia. 1A: General Geology of Indonesia and adjacent archipelago, 2: economic geology, 1B: portfolio and index, First Edition, Government Printing Press, The Hague, pp. 732. Advances in Engineering Research, volume 200 277
J.B. Scrivenor, The Geology of Malaya. Macmillan and Co. Ltd., London, 1931.
Pour, Amin Beiranvand; Hashim, Mazlan (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, 64(), 13–22. doi:10.1016/j.oregeorev.2014.06.011 DOI: https://doi.org/10.1016/j.oregeorev.2014.06.011
Stefano Luigi Gariano, Fausto Guzzetti (2016). Landslides in a changing climate, Earth-Science Reviews, Volume 162, Pages 227-252, ISSN 0012-8252, https://doi.org/10.1016/j.earscirev.2016.08.011. DOI: https://doi.org/10.1016/j.earscirev.2016.08.011
Akter, Ayesha & Megat Mohd Noor, Megat Johari & Goto, Masa & Khanam, Shamsunnahar & Parvez, Ahmed & Rasheduzzaman, Md. (2019). Landslide Disaster in Malaysia: An Overview. International Journal of Innovative Research and Development. 8. 10.24940/ijird/2019/v8/i6/JUN19058. DOI: https://doi.org/10.24940/ijird/2019/v8/i6/JUN19058
Mohd Yassin, N. A., Adnan, N. A., & Md Sadek, E. S. S. (2023). Analysis Of Flash Flood Potential Index (FFPI) And Scenarios Assessment In Shah Alam Using Gis Approach. Planning Malaysia, 21(26). https://doi.org/10.21837/pm.v21i26.1255 DOI: https://doi.org/10.21837/pm.v21i26.1255
Rita Leal Sousa, Eurípedes Vargas Jr., Helder I. Chaminé, Luis Ribeiro e Sousa & Karim Karam (2021). Risk assessment on landslides focused on the role of the water: examples from model regions (Rio de Janeiro State and Hong Kong). 10.1007/s42452-021-04300-5. https://doi.org/10.1007/s42452-021-04300-5 DOI: https://doi.org/10.1007/s42452-021-04300-5
L. Ray, R., & Lazzari, M. (2020). Introductory Chapter: Importance of Investigating Landslide Hazards. IntechOpen. doi: 10.5772/intechopen.94279 DOI: https://doi.org/10.5772/intechopen.94279
Mukhlisin, M., Matlan, S. J., Ahlan, M. J., & Taha, M. R. (2015). Analysis of Rainfall Effect to Slope Stability in Ulu Klang, Malaysia. Jurnal Teknologi, 72(3). doi:10.11113/jt.v72.4005 DOI: https://doi.org/10.11113/jt.v72.4005
Md Saad, M. H., Kamarudin, M. K. A., Toriman, M. E., Abd Wahab, N., Ata, F. M., Abu Samah, M. A., Mohd Saudi, A. S., & Manoktong, S. N. (2023). Analysis Of The Flash Flood Event And Rainfall Distribution Pattern On Relau River Basin Development, Penang, Malaysia. Planning Malaysia, 21(25). https://doi.org/10.21837/pm.v21i25.1224 DOI: https://doi.org/10.21837/pm.v21i25.1224
Batumalai, P.; Mohd Nazer, N.S.; Simon, N.; Sulaiman, N.; Umor, M.R.; Ghazali, M.A. (2023). Soil Detachment Rate of a Rainfall-Induced Landslide Soil. Water 15, no. 12: 2149. https://doi.org/10.3390/w15122149 DOI: https://doi.org/10.3390/w15122149
Muaz Abu Mansor Maturidi, A., Kasim, N., Abu Taib, K., Nur Aifa Wan Azahar, W., & Ahmad Tajuddin, H. (2021). Empirically Based Rainfall Threshold for Landslides Occurrence in Peninsular Malaysia. KSCE Journal of Civil Engineering, (), –. doi:10.1007/s12205-021-1586-4 DOI: https://doi.org/10.1007/s12205-021-1586-4
Ligong, S., Sidek, L. M., Hayder, G., & Mohd Dom, N. (2022). Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges. Water, 14(20), 3212. https://doi.org/10.3390/w14203212 DOI: https://doi.org/10.3390/w14203212
Jamaludin, S.; Ali, F. (2011). An overview of some empirical correlations between rainfall and shallow landslides and their applications in Malaysia. Electron. J. Geotech. Eng., 16, 1429–1440.
Maturidi, A. M. A. M., Kasim, N., Taib, K. A., & Azahar, W. N. A. W. (2021). Rainfall-induced landslide thresholds development by considering different rainfall parameters: A Review. Journal of Ecological Engineering, 22(10), 85-97. DOI: https://doi.org/10.12911/22998993/142183
Maturidi, A. M. A. M., Kasim, N., Taib, K. A., Azahar, W. N. A. B. W., & Husain, N. M. H. (2020, September). Rainfall-Induced Landslides in Cameron Highland Area, Malaysia. In IOP Conference Series: Materials Science and Engineering (Vol. 917, No. 1, p. 012019). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/917/1/012019
Maturidi, A. M. A. M., Kasim, N., Taib, K. A., Azahar, W. N. A. W., & Tajuddin, H. A. (2020). Empirically based rainfall threshold for landslides occurrence in Cameron highlands, Malaysia. Civil Eng Architect, 8(6), 1481-1490. DOI: https://doi.org/10.13189/cea.2020.080629
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright & Creative Commons Licence
eISSN: 0128-0945 © Year. The Authors. Published for Malaysia Institute of Planners. This is an open-access article under the CC BY-NC-ND license.
The authors hold the copyright without restrictions and also retain publishing rights without restrictions.