METEOROLOGICAL DROUGHT RISK ASSESSMENT USING SPI NUMERICAL MODEL: A CASE STUDY OF HELMAND RIVER BASIN, AFGHANISTAN

Authors

  • Hayatullah Mushwani Department of Disaster Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Mohammad Haroon Hairan Department of Natural Resource Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Kawoon Sahak Department of Environmental Science, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Abidullah Arabzai Department of Disaster Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Lutfullah Safi Department of Natural Resource Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Mujib Rahman Ahmadzai Department of Natural Resource Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Hematullah Shirzai Department of Disaster Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Sayed Kazem Hashmi Department of Environmental Science, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN
  • Sharifullah Peroz Department of Disaster Management, Faculty of Environment, KABUL UNIVERSITY (KU), AFGHANISTAN

DOI:

https://doi.org/10.21837/pm.v22i33.1544

Keywords:

Meteorological Drought, Standardized Precipitation Index, Risk Assessment, Precipitation, Helmand River Bain

Abstract

Meteorological droughts, which result from insufficient precipitation, can cause significant economic damage. While preventing meteorological droughts is impossible, their harmful effects can be reduced through close monitoring. This study aims to evaluate the meteorological drought in the Helmand River Basin using the Standardized Precipitation Index (SPI) model. The hydrometeorological data used for this analysis were collected from the Ministry of Energy and Water (MEW) in Afghanistan. The precipitation data collected from MEW covers a 40-year period from 1979 to 2021. The SPI analysis of precipitation shows that 1990, 1991, and 1992 were moderately wet, while 1982, 1983, 1995-1998, 2005, 2014, and 2015 were nearly normal. However, moderately dry conditions were observed in 2000, 2001, 2018, and 2021. Among the sampled stations, Waras and Gardez consistently had low drought levels, while Tarnak, Shila-i-charkha, and Khwabgah stations experienced moderate-level drought. Meanwhile, Lashkargah and Adraskan stations exhibited relatively high levels of drought. In conclusion, this research on the HRB, using the SPI method, has provided valuable knowledge for understanding drought dynamics in the region. The findings underscore the importance of conducting region-specific analyses, the necessity of implementing sustainable water management strategies, and the global significance of addressing drought as a pressing environmental challenge.

Downloads

Download data is not yet available.

References

Abdullah, H. M., & Rahman, M. M. (2015). Initiating rain water harvest technology for climate change induced drought resilient agriculture : scopes and challenges in Bangladesh. Journal of Agriculture and Environment for International Development, 109(2), 189–208. https://doi.org/10.12895/jaeid.20152.334

Akbari, M., & Torabi Haghighi, A. (2022). Satellite-based agricultural water consumption assessment in the ungauged and transboundary Helmand Basin between Iran and Afghanistan. Remote Sensing Letters, 13(12), 1236–1248. https://doi.org/10.1080/2150704X.2022.2142074 DOI: https://doi.org/10.1080/2150704X.2022.2142074

Alahacoon, N., & Edirisinghe, M. (2022). Novel Index for Hydrological Drought Monitoring Using Remote Sensing Approach: Standardized Water Surface Index (SWSI). Remote Sensing, 10(14). https://doi.org/https://doi.org/10.3390/rs14215324 DOI: https://doi.org/10.3390/rs14215324

Aliyar, Q., Zulfiqar, F., Datta, A., & Kuwornu, J. K. M. (2022). International Journal of Disaster Risk Reduction Drought perception and field-level adaptation strategies of farming households in drought-prone areas of Afghanistan. International Journal of Disaster Risk Reduction, 72(February), 102862. https://doi.org/10.1016/j.ijdrr.2022.102862 DOI: https://doi.org/10.1016/j.ijdrr.2022.102862

Lessons from drought response in Afghanistan, 69 Forced Migration Review 4 (2022). https://www.fmreview.org/sites/fmr/files/FMRdownloads/en/climate-crisis/amoli-jones.pdf

Augusto, C., Santos, G., Moura, R., Neto, B., Victor, T., Marques, R., Mishra, M., & Gomes, T. (2021). Science of the Total Environment Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India ( 1983 – 2018 ). Science of the Total Environment, 750, 141258. https://doi.org/10.1016/j.scitotenv.2020.141258 DOI: https://doi.org/10.1016/j.scitotenv.2020.141258

Baudoin, M., Fernando, S. H. N., Sitati, A., & Zommers, Z. (2016). From Top-Down to ‘“ Community-Centric ”’ Approaches to Early Warning Systems : Exploring Pathways to Improve Disaster Risk Reduction Through Community Participation. International Journal of Disaster Risk Science, 7(2), 163–174. https://doi.org/10.1007/s13753-016-0085-6 DOI: https://doi.org/10.1007/s13753-016-0085-6

Belal, A. A., El-Ramady, H. R., Mohamed, E. S., & Saleh, A. M. (2014). Drought risk assessment using remote sensing and GIS techniques. Arabian Journal of Geosciences, 7(1), 35–53. https://doi.org/10.1007/s12517-012-0707-2 DOI: https://doi.org/10.1007/s12517-012-0707-2

Bera, B., Shit, P. K., Sengupta, N., Saha, S., & Bhattacharjee, S. (2021). Trends and variability of drought in the extended part of Chhota Nagpur plateau (Singbhum Protocontinent), India applying SPI and SPEI indices. Environmental Challenges, 5(June), 100310. https://doi.org/10.1016/j.envc.2021.100310 DOI: https://doi.org/10.1016/j.envc.2021.100310

Bhunia, P., Das, P., & Maiti, R. (2020). Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. Earth Systems and Environment, 4(1), 43–55. https://doi.org/10.1007/s41748-019-00137-6 DOI: https://doi.org/10.1007/s41748-019-00137-6

Cao, S., Zhang, L., He, Y., Zhang, Y., Chen, Y., Yao, S., Yang, W., & Sun, Q. (2022). Science of the Total Environment Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China. 821. https://doi.org/10.1016/j.scitotenv.2022.153270 DOI: https://doi.org/10.1016/j.scitotenv.2022.153270

Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Mishra, V., Xiao, X., Randall, R. M., & Furtado, J. C. (2021). Global distribution, trends, and drivers of flash drought occurrence. Nature Communications, 12(6330), 1–11. https://doi.org/10.1038/s41467-021-26692-z DOI: https://doi.org/10.1038/s41467-021-26692-z

Dash, B. K., Rafiuddin, M., Khanam, F., & Islam, M. N. (2012). Characteristics of meteorological drought in Bangladesh. Natural Hazards, 64(2), 1461–1474. https://doi.org/10.1007/s11069-012-0307-1 DOI: https://doi.org/10.1007/s11069-012-0307-1

Dost, R., & Kasiviswanathan, K. S. (2023). Quantification of Water Resource Sustainability in Response to Drought Risk Assessment for Afghanistan River Basins. Natural Resources Research, 32(1), 235–256. https://doi.org/10.1007/s11053-022-10129-5 DOI: https://doi.org/10.1007/s11053-022-10129-5

Ekundayo, O. Y., Okogbue, E. C., Akinluyi, F. O., Kalumba, A. M., & Orimoloye, I. R. (2021). Spatiotemporal drought assessment using vegetation health index and standardized precipitation index over Sudano-Sahelian region of Nigeria. African Geographical Review, 40(4), 412–424. https://doi.org/10.1080/19376812.2020.1841658 DOI: https://doi.org/10.1080/19376812.2020.1841658

Fahimirad, Z., & Shahkarami, N. (2021). The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions. Water Resources Management, 35(12), 3969–3993. https://doi.org/10.1007/s11269-021-02918-z DOI: https://doi.org/10.1007/s11269-021-02918-z

Gadiwala, M. S. (2013). A Study of Drought over Sindh ( Pakistan ) Using Standardized Precipitation Index ( SPI ) 1951 to 2010. 9(18), 15–22.

Geng, S. M., Yan, D. H., Zhang, T. X., Weng, B. S., Zhang, Z. B., & Qin, T. L. (2015). Effects of drought stress on agriculture soil. Natural Hazards, 75(2), 1997–2011. https://doi.org/10.1007/s11069-014-1409-8 DOI: https://doi.org/10.1007/s11069-014-1409-8

Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., & Zenebe, A. (2018). Modeling the Spatio-Temporal Meteorological Drought Characteristics Using the Standardized Precipitation Index (SPI) in Raya and Its Environs, Northern Ethiopia. Earth Systems and Environment, 2(2), 281–292. https://doi.org/10.1007/s41748-018-0057-7 DOI: https://doi.org/10.1007/s41748-018-0057-7

Glade, T., & Nadim, F. (2014). Early warning systems for natural hazards and risks. Natural Hazards, 12(70), 1669–1671. https://doi.org/10.1007/s11069-013-1000-8 DOI: https://doi.org/10.1007/s11069-013-1000-8

Gleick, P. H. (2014). Water, Drought, Climate Change, and Conflict in Syria. American Meteorological Society, 7, 331–340. https://doi.org/0.1175/WCAS-D-13-00059.1 DOI: https://doi.org/10.1175/WCAS-D-13-00059.1

Goes, B. J. M., Howarth, S. E., Wardlaw, R. B., Hancock, I. R., & Parajuli, U. N. (2015). Integrated water resources management in an insecure river basin: a case study of Helmand River Basin, Afghanistan. International Journal of Water Resources Development, 32(1), 3–25. https://doi.org/10.1080/07900627.2015.1012661

Goes, B. J. M., Howarth, S. E., Wardlaw, R. B., Hancock, I. R., & Parajuli, U. N. (2016). Integrated water resources management in an insecure river basin: a case study of Helmand River Basin, Afghanistan. International Journal of Water Resources Development, 32(1), 3–25. https://doi.org/10.1080/07900627.2015.1012661 DOI: https://doi.org/10.1080/07900627.2015.1012661

Hermans, T. D. G., Šakić, R., & Marc, T. (2022). Exploring the integration of local and scientific knowledge in early warning systems for disaster risk reduction : a review. Natural Hazards, 114(2), 1125–1152. https://doi.org/10.1007/s11069-022-05468-8 DOI: https://doi.org/10.1007/s11069-022-05468-8

Hua, L., Zhao, T., & Zhong, L. (2022). Journal of Hydrology : Regional Studies Future changes in drought over Central Asia under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, 43(February), 101191. https://doi.org/10.1016/j.ejrh.2022.101191 DOI: https://doi.org/10.1016/j.ejrh.2022.101191

Jawid, A., & Khadjavi, M. (2019). Adaptation to climate change in Afghanistan: Evidence on the impact of external interventions. Economic Analysis and Policy, 64, 64–82. https://doi.org/10.1016/j.eap.2019.07.010 DOI: https://doi.org/10.1016/j.eap.2019.07.010

Jiang, A., & Gharabaghi, B. (2021). The Role of Large Dams in a Transboundary Drought Management Co-Operation Framework — Case Study of the Kabul River Basin.

Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application of the Standardized Precipitation Index (SPI) in Greece. Water (Switzerland), 3(3), 787–805. https://doi.org/https://doi.org/10.3390/w3030787 DOI: https://doi.org/10.3390/w3030787

Keskin, M. E., Terzi, Ö., Taylan, E. D., & Küçükyaman, D. (2011). Meteorological drought analysis using artificial neural networks. Scientific Research and Essays, 6(21), 4469–4477. https://doi.org/10.5897/sre10.1022 DOI: https://doi.org/10.5897/SRE10.1022

Khalili, D., Farnoud, T., Jamshidi, H., Kamgar-Haghighi, A. A., & Zand-Parsa, S. (2011). Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones. Water Resources Management, 25(6), 1737–1757. https://doi.org/10.1007/s11269-010-9772-z DOI: https://doi.org/10.1007/s11269-010-9772-z

Lei, Y., Zhang, H., Chen, F., & Zhang, L. (2016). Science of the Total Environment How rural land use management facilitates drought risk adaptation in a changing climate — A case study in arid northern China. Science of the Total Environment, The, 550, 192–199. https://doi.org/10.1016/j.scitotenv.2016.01.098 DOI: https://doi.org/10.1016/j.scitotenv.2016.01.098

Liu, C., Yang, C., Yang, Q., & Wang, J. (2021). Spatiotemporal drought analysis by the standardized precipitation index ( SPI ) and standardized precipitation evapotranspiration index ( SPEI ) in Sichuan Province ,. Scientific Reports, 1–14. https://doi.org/10.1038/s41598-020-80527-3 DOI: https://doi.org/10.1038/s41598-020-80527-3

Lu, H., Wu, Y., Li, Y., & Liu, Y. (2017). Effects of meteorological droughts on agricultural water resources in southern China. Journal of Hydrology, 548, 419–435. https://doi.org/10.1016/j.jhydrol.2017.03.021 DOI: https://doi.org/10.1016/j.jhydrol.2017.03.021

Mann, M. E., & Gleick, P. H. (2015). Climate change and California drought in the 21st century. Commentary, 112(13), 3858–3859. https://doi.org/10.1073/pnas.1503667112 DOI: https://doi.org/10.1073/pnas.1503667112

Mayar, M. A. (2021). Droughts on the Horizon: Can Afghanistan manage this risk? Afghanistan Analysts Network. https://www.afghanistan-analysts.org/en/reports/economy-development-environment/droughts-on-the-horizon-can-afghanistan-manage-this-risk/

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012 DOI: https://doi.org/10.1016/j.jhydrol.2010.07.012

Nabizada, A. F., Rousta, I., Dalvi, M., Olafsson, H., Siedliska, A., Baranowski, P., & Krzyszczak, J. (2022). Spatial and Temporal Assessment of Remotely Sensed Land Surface Temperature Variability in Afghanistan during 2000–2021. Climate, 10(7). https://doi.org/10.3390/cli10070111 DOI: https://doi.org/10.3390/cli10070111

Nagheeby, M., & Warner, J. (2018). The geopolitical overlay of the hydropolitics of the Harirud River Basin. International Environmental Agreements: Politics, Law and Economics, 18(6), 839–860. https://doi.org/10.1007/s10784-018-9418-9 DOI: https://doi.org/10.1007/s10784-018-9418-9

Nam, W.-H., Choi, J.-Y., Yoo, S.-H., & Jang, M.-W. (2012). A decision support system for agricultural drought management using risk assessment. Paddy and Water Environment, 10(3), 197–207. https://doi.org/10.1007/s10333-012-0329-z DOI: https://doi.org/10.1007/s10333-012-0329-z

Nasimi, M. N., Sagin, J., & Wijesekera, N. T. S. (2020). Climate and Water Resources Variation in Afghanistan and the Need for Urgent Adaptation Measures. International Journal of Food Science and Agriculture, 4(1), 49–64. https://doi.org/10.26855/er.2020.02.009 DOI: https://doi.org/10.26855/er.2020.02.009

Ojha, S. S., Singh, V., & Roshni, T. (2021). Comparison of meteorological drought using spi and spei. Civil Engineering Journal (Iran), 7(12), 2130–2149. https://doi.org/10.28991/cej-2021-03091783 DOI: https://doi.org/10.28991/cej-2021-03091783

Pandey, V., Srivastava, P. K., Mall, R. K., Munoz-Arriola, F., & Han, D. (2022). Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India. Geocarto International, 37(7), 1899–1918. https://doi.org/10.1080/10106049.2020.1801862 DOI: https://doi.org/10.1080/10106049.2020.1801862

Potop, V., & Türkott, L. (2010). Drought episodes in the Czech Republic and their potential effects in agriculture. 373–388. https://doi.org/10.1007/s00704-009-0148-3 DOI: https://doi.org/10.1007/s00704-009-0148-3

Qureshi, A. S., & Akhtar, M. (2004). A survey of drought impacts and coping measures in Helmand and Kandahar provinces of Afghanistan. In International Water Management Institute (Issue February). https://www.preventionweb.net/publication/survey-drought-impacts-and-coping-measures-helmand-and-kandahar-provinces-afghanistan

Rahman, M. R., & Lateh, H. (2016). Meteorological drought in Bangladesh: assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environmental Earth Sciences, 75(12). https://doi.org/10.1007/s12665-016-5829-5 DOI: https://doi.org/10.1007/s12665-016-5829-5

Rahmani, F., & Fattahi, M. H. (2021). A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature. Natural Hazards, 109(3), 2197–2219. https://doi.org/10.1007/s11069-021-04916-1 DOI: https://doi.org/10.1007/s11069-021-04916-1

Rasooli, M. W., Bhushan, B., & Kumar, N. (2020). Applicability Of Wireless Sensor Networks & Iot In Saffron & Wheat Crops : A Smart Agriculture Perspective. International Journal of Technology Research, 9(February), 2456–2461.

Rogers, D., & Tsirkunov, V. (2010). Costs and Benefit of Early Warning Systems (Issue 1). https://www.preventionweb.net/english/hyogo/gar/2011/en/bgdocs/Rogers_&_Tsirkunov_2011.pdf

Rousta, I., Olafsson, H., Moniruzzaman, M., Zhang, H., Liou, Y. A., Mushore, T. D., & Gupta, A. (2020). Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sensing, 12(15). https://doi.org/10.3390/RS12152433 DOI: https://doi.org/10.3390/rs12152433

Sabory, N. R., Danish, M. S. S., & Senjyu, T. (2020). Afghanistan’s Energy and Environmental Scenario. In Muhammad Asif (Ed.), Energy and Environmental Outlook for South Asia (1st ed., Issue December, p. 22). CRC. https://doi.org/https://doi.org/10.1201/9781003131878 DOI: https://doi.org/10.1201/9781003131878-2

Said, M. Z., Gapor, S. A., & Hamat, Z. (2024). Flood Vulnerability and Adaptation Assessment in Padang Terap District, Kedah, Malaysia. Planning Malaysia, 22(2), 1–16. https://doi.org/10.21837/pm.v22i31.1450 DOI: https://doi.org/10.21837/pm.v22i31.1450

Samim, S. A., Hu, Z., Stepien, S., Amini, S. Y., Rayee, R., Niu, K., & Mgendi, G. (2021). Food Insecurity and Related Factors among Farming Families in Takhar Region , Afghanistan. Sustainability (Switzerland), 13(18), 1–17. https://doi.org/https://doi.org/10.3390/su131810211 DOI: https://doi.org/10.3390/su131810211

Santos, C. A. G., Brasil Neto, R. M., Passos, J. S. de A., & da Silva, R. M. (2017). Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil. Environmental Monitoring and Assessment, 189(6), 250. https://doi.org/10.1007/s10661-017-5948-9 DOI: https://doi.org/10.1007/s10661-017-5948-9

Shah, S. A. A., Zhou, P., Walasai, G. D., & Mohsin, M. (2019). Energy security and environmental sustainability index of South Asian countries : A composite index approach. Ecological Indicators, 106(66), 105507. https://doi.org/10.1016/j.ecolind.2019.105507 DOI: https://doi.org/10.1016/j.ecolind.2019.105507

Shahzaman, M., Zhu, W., Ullah, I., Mustafa, F., Bilal, M., Ishfaq, S., Nisar, S., Arshad, M., Iqbal, R., & Aslam, R. W. (2021). Comparison of Multi-Year Reanalysis , Models , and Satellite Remote Sensing Products for Agricultural Drought Monitoring over South Asian Countries. Remote Sensing, 13(3294). https://doi.org/https://doi.org/10.3390/rs13163294 DOI: https://doi.org/10.3390/rs13163294

Tabari, H., & Willems, P. (2023). Global risk assessment of compound hot-dry events in the context of future climate change and socioeconomic factors. Climate and Atmospheric Science, 6(74), 1061. https://doi.org/10.1038/s41612-023-00401-7 DOI: https://doi.org/10.1038/s41612-023-00401-7

The World Bank. (2017). Afghanistan Disaster Risk Profile. GTDRR.

Vicente-serrano, S. M., Quiring, S. M., Peña-gallardo, M., Yuan, S., & Domínguez-castro, F. (2020). Earth-Science Reviews A review of environmental droughts : Increased risk under global warming ? Earth-Science Reviews, 201(November 2018), 102953. https://doi.org/10.1016/j.earscirev.2019.102953 DOI: https://doi.org/10.1016/j.earscirev.2019.102953

Vogt, J. V, Naumann, G., Masante, D., Spinoni, J., Cammalleri, C., Erian, W., Pischke, F., Pulwarty, R., & Barbosa, P. (2018). Drought Risk Assessment and Management - A Conceptual Framework - (Vol. 2018, Issue August). https://doi.org/10.2760/057223

Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., Liang, Q., & Hussain, Z. (2020). Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. Journal of Hydrology, 584(January), 124751. https://doi.org/10.1016/j.jhydrol.2020.124751 DOI: https://doi.org/10.1016/j.jhydrol.2020.124751

Wichitarapongsakun, P., Sarin, C., Klomjek, P., & Chuenchooklin, S. (2016). Rainfall prediction and meteorological drought analysis in the Sakae Krang River basin of Thailand. Agriculture and Natural Resources, 50(6), 490–498. https://doi.org/10.1016/j.anres.2016.05.003 DOI: https://doi.org/10.1016/j.anres.2016.05.003

Wilhite, D. A. (2002). Combating drought through preparedness. Natural Resources Forum, 26(4), 275–285. DOI: https://doi.org/10.1111/1477-8947.00030

Wossenyeleh, B. K., Kasa, A. S., Verbeiren, B., & Huysmans, M. (2022). Drought propagation in the hydrological cycle in a semiarid region: a case study in the Bilate catchment, Ethiopia. Hydrogeology Journal, 30(3), 751–766. https://doi.org/10.1007/s10040-022-02459-8 DOI: https://doi.org/10.1007/s10040-022-02459-8

Wu, H., Hayes, M. J., Wilhite, D. A., & Svoboda, M. D. (2005). The effect of the length of record on the standaraized precipitation index calulation. International Journal of Climatology, 520(14624), 505–520. https://doi.org/10.1002/joc.1142 DOI: https://doi.org/10.1002/joc.1142

Ying, L. J., Hassan, L. S., Abidin, N. Z., Lim, N. H. H., & Hasnan, L. (2023). Assessing the Social Values of Historical Waterfront: a Case Study of Sungai Petani, Kedah, Malaysia. Planning Malaysia, 21(6), 130–143. https://doi.org/10.21837/PM.V21I30.1391 DOI: https://doi.org/10.21837/pm.v21i30.1391

Downloads

Published

2024-08-26

How to Cite

Mushwani, H., Hairan, M. H., Sahak, K., Arabzai, A., Safi, L., Ahmadzai, M. R., Shirzai, H., Hashmi, S. K., & Peroz, S. (2024). METEOROLOGICAL DROUGHT RISK ASSESSMENT USING SPI NUMERICAL MODEL: A CASE STUDY OF HELMAND RIVER BASIN, AFGHANISTAN. PLANNING MALAYSIA, 22(33). https://doi.org/10.21837/pm.v22i33.1544

Most read articles by the same author(s)