ASSESSING SATELLITE RAINFALL ACCURACY IN DENSE TROPICAL SABAH EAST COAST FOREST, MALAYSIA: A CROSS-VALIDATION OF DOWNSCALING TECHNIQUE

Authors

  • Lindah Roziani Jamru Faculty of Social Sciences and Humanities, UNIVERSITI MALAYSIA SABAH
  • Adi Jafar Faculty of Social Sciences and Humanities, UNIVERSITI MALAYSIA SABAH
  • Muhammad Izuan Nadzri Institute Oceanography and Environment, UNIVERSITI MALAYSIA TERENGGANU
  • Mohamad Pirdaus Yusoh Borneo Institute for Indigenous Studies, UNIVERSITI MALAYSIA SABAH
  • Fera Cleophas Faculty of Science and Natural Resources, UNIVERSITI MALAYSIA SABAH

DOI:

https://doi.org/10.21837/pm.v22i33.1566

Keywords:

Rainfall, TRMM, satellite data, climate, downscaling

Abstract

Rainfall is one of pivotal elements in the hydrological cycle that essential for ensuring the water balance in present and in the future. Traditional in-situ observations have been the conventional method for obtaining rainfall data, but their limitations arise from discrete point measurements that fail to represent the entire area. To overcome these limitations, this study utilizes satellite based TRMM data products for rainfall estimation. The research aims to cross-validate the TRMM 3B43-v7 product against corresponding in-situ measured rainfall, focusing on error localization in Sabah's east coast. The derivation of the rainfall rate from TRMM data is adequate with additional data from three manual gauges within the plots. The correlation between TRMM and ground was good (R2 = 0.78, RMSE = 65.65 mm). The Nash and Sutcliffe Error results closed to value 1 indicate that the accuracy of the TRMM data compared to the rain-gauge data in Danum has a good agreement. This is due to the IDW downscaling method for satellite rainfall data using additional data from three manual-gauges within the plots to increase the accuracy of the TRMM data. In summary, the downscaling method proves capable of providing fine spatial resolution and increasing the number of pixels in the study area. Future research endeavours may benefit from incorporating more station data to further improve the interpolation of satellite data and derive more precise results.

Downloads

Download data is not yet available.

References

Abdul Latip, N., & Umar, M. U. (2022). A SUSTAINABLE CARBON FOOTPRINT ANALYSIS FOR THE CITY OF KUANTAN, PAHANG MALAYSIA. PLANNING MALAYSIA, 20(23). doi:10.21837/pm.v20i23.1147 DOI: https://doi.org/10.21837/pm.v20i23.1147

Abdul Latip, N., Roystones Steven, S., Rashid, R., Karim, R., Umzarulazijo Umar, M., Hussin, R., Pirdaus Yusoh, M., Stephen, J., Andin, C., & Kanyo, N.-I. (2022). CHANGE OF FOREST LAND USE BASED ON CONSERVATION POLICY AND PRACTICE: A CASE STUDY IN DANUM VALLEY, MALAYSIA. PLANNING MALAYSIA, 20(23). doi:10.21837/pm.v20i23.1150 DOI: https://doi.org/10.21837/pm.v20i23.1150

Bidin, K. and Chappell, N.A. (2003). First evidence of a structured and dynamic spatial pattern of rainfall within a small humid tropical catchment. Hydrology and Earth System Sciences Discussions. 7(2), 245–253. DOI: https://doi.org/10.5194/hess-7-245-2003

Cosma, S., Richard, E. and Miniscloux, F. (2002). The role of small‐scale orographic features in the spatial distribution of precipitation. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography. 128(579), 75–92 DOI: https://doi.org/10.1256/00359000260498798

Hsu, K., Gao, X., Sorooshian, S. and Gupta, H. V (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology. 36(9), 1176–1190. DOI: https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2

Huffman, G.J., Adler, R.F., Bolvin, D.T. and Nelkin, E.J. (2010). The TRMM multi-satellite precipitation analysis (TMPA). In Satellite rainfall applications for surface hydrology. Springer, pp.3–22. DOI: https://doi.org/10.1007/978-90-481-2915-7_1

Hornberger, G.M., Wiberg, P.L., Raffensperger, J.P. and D’Odorico, P. (2014). Elements of physical hydrology, JHU Press.

Jamru, L. R., Sharil, M. N., & Yusoh, M. P. (2023). ASSESSING THE EVOLUTION OF PADDY CULTIVATION IN KOTA BELUD, SABAH USING GIS AND REMOTE SENSING TECHNIQUES. PLANNING MALAYSIA, 21(28).

Jamru, Lindah Roziani, Mohamad Nazril Sharil, Adi Jafar, Oliver Valentine Eboy, Colonius Atang & Mustapa Abdul Talib. (2023). The Effectiveness of Remote Sensing Techniques for Land use Classification in Kota Belud, Sabah. Asian Journal of Research in Education and Social Sciences, [S.l.], v. 5, n. 2, p. 90-97, june 2023. Available at: <https://myjms.mohe.gov.my/index.php/ajress/article/view/22567>

Jamru Lindah. Roziani and Hashim, Mazlan. (2019). LiDAR Sensing for biophysical structure of vegetation in Sub-urban Kluang, Johor, International Graduate Conference of Built Environment & Surveying. Vol 1, 507-515. doi: 10.7717/peerj.4397 ISSN: 2167-8359 DOI: https://doi.org/10.7717/peerj.4397

Jamru Lindah. Roziani, and Hashim, Mazlan. (2018). Treetop detection from LiDAR using local maxima algorithm. ACRS 39th (Remote Sensing Enabling Prosperity). Vol 5, pg 2692-2700

Jamru, Lindah. Roziani, and Hashim, Mazlan. (2015). Modeling LiDAR cloud point to estimate tree height and delineation of tree crown for selected vegetation in suburban Kluang, Johor. In 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia.

Jobard, I. (2001). Status of satellite retrieval of rainfall at different scales using multi-source data. In MEGHA-TROPIQUES 2nd Scientific Workshop 2-6 July.

Joyce, R.J., Janowiak, J.E., Arkin, P.A. and Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of hydrometeorology. 5(3), 487–503. DOI: https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2

Johnson, R.H. and Priegnitz, D.L. (1981). Winter monsoon convection in the vicinity of North Borneo. Part II: Effects on large-scale fields. Monthly Weather Review. 109(8), 1615–1628. DOI: https://doi.org/10.1175/1520-0493(1981)109<1615:WMCITV>2.0.CO;2

Kripalani, R.H. and Kulkarni, A. (1998). The relationship between some large-scale atmospheric parameters and rainfall over Southeast Asia: A comparison with features over India. Theoretical and Applied Climatology. 59(1–2), 1–11. DOI: https://doi.org/10.1007/s007040050009

Kummerow, C., Barnes, W., Kozu, T., Shiue, J. and Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of atmospheric and oceanic technology. 15(3), 809–817. DOI: https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2

Jamru, L. R., Sharil, M. N., & Yusoh, M. P. (2023). ASSESSING THE EVOLUTION OF PADDY CULTIVATION IN KOTA BELUD, SABAH USING GIS AND REMOTE SENSING TECHNIQUES. PLANNING MALAYSIA, 21(28). https://doi.org/10.21837/pm.v21i28.1327 DOI: https://doi.org/10.21837/pm.v21i28.1327

Lindah Roziani Jamru, Mazlan Hashim, Mui How Phua, Ang Kean Hua, Adi Jafar, Zulayti Zakaria, Mohamad Pirdaus Yusoh & Fera Cleophas. (2022). proceedings of universiti malaysia sarawak social sciences & humanities research conference 2022. eISBN 978-967-2298-96-0. pg 147-158. https://www.fssh.unimas.my/images/2022/pdf/SSHR2022Proceedings

Lindah Roziani Jamru and Zullyadini A Rahaman. (2018). IOP Conf. Ser.: Earth Environ. Sci. 169 012106DOI 10.1088/1755-1315/169/1/012106 DOI: https://doi.org/10.1088/1755-1315/169/1/012106

Lindah Roziani, Jamru., Zullyadini, A. R., & Wan Ruslan, I. (2013). Permodelan perubahan tanah bencah di lembangan sungai Setiu, Terengganu menggunakan logistik regresi dan aplikasi Sistem Maklumat Geografi (GIS). International Journal of Environment, Society and Space, 1(1), 75-97.

Lindah Roziani Jamru. (2018). Correction pit free canopy height model derived from LiDAR data for the broad leaf tropical forest. IOP Conf. Ser.: Earth Environ. Sci. 169 012113 DOI: https://doi.org/10.1088/1755-1315/169/1/012113

Mahmud, M., Hashim, M., Matsuyama, H., Numata, S. and Hosaka, T., (2018). Spatial downscaling of satellite precipitation data in humid tropics using a site-specific seasonal coefficient. Water, 10(4), p.409. DOI: https://doi.org/10.3390/w10040409

Maggioni, V., Meyers, P.C. and Robinson, M.D. (2016). A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era. Journal of Hydrometeorology. 17(4), 1101–1117. DOI: https://doi.org/10.1175/JHM-D-15-0190.1

Manonmani, R.; Prabaharan, S.; Vidhya, R.; Ramalingam, M. (2012). Application of GIS in urban utility mapping using image processing techniques. GeoSpat. Inf. Sci., 15, 271–275. DOI: https://doi.org/10.1080/10095020.2012.714660

Mollalo, B.V. & Rivera, K.M. (2020). GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Science of the Total Environment, 728, 13888. DOI: https://doi.org/10.1016/j.scitotenv.2020.138884

Serrat‐Capdevila, A., Valdes, J.B. and Stakhiv, E.Z. (2014). Water management applications for satellite precipitation products: Synthesis and recommendations. JAWRA Journal of the American Water Resources Association. 50(2), 509–525. DOI: https://doi.org/10.1111/jawr.12140

Sharon, D. and Arazi, A. (1997). The distribution of wind-driven rainfall in a small valley: an empirical basis for numerical model verification. Journal of Hydrology. 201(1–4), 21–48. DOI: https://doi.org/10.1016/S0022-1694(97)00034-6

Shao, Z., Ahmad, M. N., Javed, A., Islam, F., Jahangir, Z., & Ahmad, I. (2023). Expansion of Urban Impervious Surfaces in Lahore (1993–2022) Based on GEE and Remote Sensing Data. Photogrammetric Engineering & Remote Sensing, 89(8), 479-486. DOI: https://doi.org/10.14358/PERS.23-00001R2

Turk, F.J. and Miller, S.D. (2005). Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Transactions on Geoscience and Remote Sensing. 43(5), 1059–1069. DOI: https://doi.org/10.1109/TGRS.2004.841627

Todd, M.C., Barrett, E.C., Beaumont, M.J. and Green, J.L. (1995). Satellite identification of rain days over the upper Nile river basin using an optimum infrared rain/no-rain threshold temperature model. Journal of Applied Meteorology. 34(12), 2600–2611. DOI: https://doi.org/10.1175/1520-0450(1995)034<2600:SIORDO>2.0.CO;2

Yatagai, A.; Krishnamurti, T.N.; Kumar, V.; Mishra, A.K.; Simon. (2014). A. Use of APHRODITE rain gauge–based precipitation and TRMM 3B43 products for improving Asian monsoon seasonal precipitation forecasts by the superensemble method. J. Clim. 27, 1062–1069 DOI: https://doi.org/10.1175/JCLI-D-13-00332.1

Downloads

Published

2024-08-26

How to Cite

Jamru, L. R., Jafar, A., Nadzri, M. I., Yusoh, M. P., & Cleophas, F. (2024). ASSESSING SATELLITE RAINFALL ACCURACY IN DENSE TROPICAL SABAH EAST COAST FOREST, MALAYSIA: A CROSS-VALIDATION OF DOWNSCALING TECHNIQUE. PLANNING MALAYSIA, 22(33). https://doi.org/10.21837/pm.v22i33.1566