EVALUATION OF CARBONATED PRODUCT FROM MINERAL CARBONATION OF MINING WASTE FOR CARBON SEQUESTRATION
DOI:
https://doi.org/10.21837/pm.v22i34.1586Keywords:
Mining Waste, Mineral Carbonation, Gold Mine, Carbon Capture and Storage, Waste ManagementAbstract
Mining operations generate significant quantities of waste containing alkaline earth silicates, which are valuable for carbon sequestration. Hence, the goal of this study is to assess the possibility of using mining waste to store carbon through a process of mineral carbonation. The study tested mineral carbonation under low reactivity conditions, including ambient pressure and low temperature, to evaluate the effect of pH levels on process efficiency. The samples were discovered to have an alkaline pH, suggesting that they were suitable for mineral carbonation reactions from the beginning. The carbonation process of the mineral was conducted at different pH levels of 8, 10, and 12. The findings showed that the carbonation efficiency was approximately 3%, with the highest level observed at pH 12. Through thermogravimetric analysis, it was observed that there was a multi stage transformation of minerals, which indicated the formation of carbonates containing iron and magnesium. The process captured approximately 33 and 39 g of CO2/kg. The process indicates that mine waste can be used as a source material for mineral carbonation, as demonstrated by the formation of iron and calcium carbonate products. This research demonstrates that mine waste has the potential for long-term carbon storage, offering a beneficial method for waste management and carbon capture strategies.
Downloads
References
Azdarpour, A., Karaei, M. A., Hamidi, H., Mohammadian, E., & Honarvar, B. (2018). CO₂ sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum, 4(4), 398-407. https://doi.org/10.1016/j.petlm.2017.10.002 DOI: https://doi.org/10.1016/j.petlm.2017.10.002
Gerdemann, S. J., Dahlin, D. C., & O’Connor, W. K. (2002). Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In Greenhouse Gas Control Technologies – 6th International Conference (Vol. 1, pp. 677-682). https://doi.org/10.1016/B978-008044276-1/50108-2 DOI: https://doi.org/10.1016/B978-008044276-1/50108-2
Goldstein, J., Newbury, D. E., Joy, D. C., Layman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Micheal, J. R. (2003). Scanning electron microscopy and X-ray microanalysis (3rd ed.). Kluwer Academic/Plenum Publisher. DOI: https://doi.org/10.1007/978-1-4615-0215-9
Hitch, M., Ballantyne, S. M., & Sarah, R. (2009). Revaluing mine waste rock for carbon capture and storage. International Journal of Mining, Reclamation and Environment, 24(1), 64-79. https://doi.org/10.1080/17480930902843102 DOI: https://doi.org/10.1080/17480930902843102
Ibrahim, M. H., El-Naas, M. H., Benamor, A., Al-Sobhi, S. S., & Zhang, Z. (2019). Carbon mineralization by reaction with steel-making waste: A review. Processes, 7, 115. DOI: https://doi.org/10.3390/pr7020115
Jorat, M. E., Goddard, M. A., Manning, P., Lau, H. K., Ngeow, S., Sohi, S. P., & Manning, D. A. C. (2020). Passive CO₂ removal in urban soils: Evidence from brownfield sites. Science of the Total Environment, 703, 135573. DOI: https://doi.org/10.1016/j.scitotenv.2019.135573
Kawigraha, A., Soedarsono, J. W., Harjanto, S., & Pramusanto. (2013). Thermogravimetric analysis of the reduction of iron ore with hydroxyl content. Advanced Materials Research, 774–776(July), 682–686. DOI: https://doi.org/10.4028/www.scientific.net/AMR.774-776.682
Kiew, R., & Rahman, R. A. (2021). Plant diversity assessment of karst limestone: A case study of Malaysia’s Batu Caves. Nature Conservation, 44, 21-49. https://doi.org/10.3897/natureconservation.44.60175 DOI: https://doi.org/10.3897/natureconservation.44.60175
Kiptarus, J. J., Muumbo, A. M., Makokha, A. B., & Kimutai, S. K. (2015). Characterization of selected mineral ores in the eastern zone of Kenya: Case study of Mwingi North Constituency in Kitui County. International Journal of Mining Engineering and Mineral Processing, 4(1), 8–17.
Kivinen, S. (2017). Sustainable post-mining land use: Are closed metal mines abandoned or re-used space? Sustainability, 9, 1705. DOI: https://doi.org/10.3390/su9101705
Kusin, F. M., Che-Awang, N. H., Syed-Hasan, S. N. M., Abdul-Rahim, H. A., Azmin, N., Jusop, S., & Kyoung-Woong, K. (2019). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils, and sediments of a gold mining area and potential associated risks. Catena, 183, 104229. DOI: https://doi.org/10.1016/j.catena.2019.104229
Kusin, F. M., Syed-Hasan, S. N. M., Hassim, M. A., & Molahid, V. L. M. (2020). Mineral carbonation of sedimentary mine waste for carbon sequestration and potential reutilization as cementitious material. Environmental Science and Pollution Research, 27(11), 12767–12780. DOI: https://doi.org/10.1007/s11356-020-07877-3
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., & Sharps, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153–1170. DOI: https://doi.org/10.1016/0360-5442(95)00071-N
Lavikko, S. (2017). Geological and mineralogical aspects on mineral carbonation (Ph.D. thesis). Åbo Akademi University.
Lechat, K., Jean-Michel, L., Molson, J., Beaudoin, G., & Hébert, R. (2016). Field evidence of CO₂ sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada. International Journal of Greenhouse Gas Control, 47, 110–121. DOI: https://doi.org/10.1016/j.ijggc.2016.01.036
Manning, D. A. C., Renforth, P., Lopez-Capel, E., Robertson, S., & Ghazireh, N. (2013). Carbonate precipitation in artificial soils produced from basaltic quarry fines and composts: An opportunity for passive carbon sequestration. International Journal of Greenhouse Gas Control, 17, 309–317. DOI: https://doi.org/10.1016/j.ijggc.2013.05.012
Mendoza, E. Y. M., Santos, A. S., López, E. V., Drozd, V., Durygin, A., Chen, J., & Saxena, S. K. (2019). Iron oxides as efficient sorbents for CO₂ capture. Journal of Materials Research and Technology, 8(3), 2944–2956. DOI: https://doi.org/10.1016/j.jmrt.2019.05.002
Misni, A., Jamaluddin, S., & Kamaruddin, S. M. (2015). Carbon sequestration through urban green reserve and open space. Planning Malaysia, 13(5). DOI: https://doi.org/10.21837/pmjournal.v13.i5.142
Mohammad-Sabri, S. A., & Ponrahono, Z. (2024). Greening the city: Criteria and indicators for evaluating the effectiveness of small urban parks in promoting urban resilience to climate change. Planning Malaysia, 22(30). DOI: https://doi.org/10.21837/pm.v22i30.1430
Mohd-Isha, N. S., Kusin, F. M., Kamal, N. M. A., Hasan, S. N. M. S., & Molahid, V. L. M. (2021). Geochemical and mineralogical assessment of sedimentary limestone mine waste and potential for mineral carbonation. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00784-z DOI: https://doi.org/10.1007/s10653-020-00784-z
Muhd-Nor, N. H., Selamat, S. N., Rashid, M. H. A., Ahmad, M. F., Jamian, S., Kiong, S. C., Hassan, M. F., Mohamad, F., & Yokoyama, S. (2016). Carbon sequestration and carbon capture and storage (CCS) in Southeast Asia. Journal of Physics: Conference Series, 725, 012010. DOI: https://doi.org/10.1088/1742-6596/725/1/012010
Muwanguzi, A. J. B., Karasev, A. V., Byaruhanga, J. K., & Jonsson, P. G. (2012). Characterization of chemical composition and microstructure of natural iron ore from Muko deposits. International Scholarly Research Network ISRN Materials Science, 1–9. DOI: https://doi.org/10.5402/2012/174803
Nowak, D. J., Greenfield, E. J., Hoehn, R. E., & Lapoint, E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178, 229-236. https://doi.org/10.1016/j.envpol.2013.03.019 DOI: https://doi.org/10.1016/j.envpol.2013.03.019
O'Connor, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J., Penner, L. R., & Nilsen, D. N. (2005). Aqueous mineral carbonation. Mineral Processing and Extractive Metallurgy Review, 26(5), 227-246.
Ohenoja, K., Rissanen, J., Kinnunen, P., & Illikainen, M. (2020). Direct carbonation of peat-wood fly ash for carbon capture and utilization in construction application. Journal of CO₂ Utilization, 40, 101203. DOI: https://doi.org/10.1016/j.jcou.2020.101203
Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of CO₂. Journal of Petroleum Science and Engineering, 109, 364–392. https://doi.org/10.1016/j.petrol.2013.03.013 DOI: https://doi.org/10.1016/j.petrol.2013.03.013
Omale, S. O., Choong, T. S. Y., Abdullah, L. C., Siajam, S. I., & Yip, M. W. (2019). Utilization of Malaysia EAF slags for effective application in direct aqueous sequestration of carbon dioxide under ambient temperature. Heliyon, 5, e02602. DOI: https://doi.org/10.1016/j.heliyon.2019.e02602
Pan, S.-Y., Chang, E. E., & Chiang, P.-C. (2012). CO₂ capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. Aerosol and Air Quality Research, 1, 770–791. DOI: https://doi.org/10.4209/aaqr.2012.06.0149
Rahmani, O. (2020). An experimental study of accelerated mineral carbonation of industrial waste red gypsum for CO₂ sequestration. Journal of CO₂ Utilization, 35, 265-271. DOI: https://doi.org/10.1016/j.jcou.2019.10.005
Syed-Hasan, S. N. M., Mohd Kusin, F., Jusop, S., & Mohamat Yusuff, F. (2019). The mineralogy and chemical properties of sedimentary waste rocks with carbon sequestration potential at the Selinsing gold mine, Pahang. Pertanika Journal of Science & Technology, 27(2), 1005-1012.
Wang, X., & Maroto-Valer, M. M. (2011). Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel, 90(3), 1229-1237. https://doi.org/10.1016/j.fuel.2010.10.040 DOI: https://doi.org/10.1016/j.fuel.2010.10.040
Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G., Raudsepp, M., Gabite, J. E., & Southam, G. (2009). Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Economic Geology, 104, 95–112. DOI: https://doi.org/10.2113/gsecongeo.104.1.95
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright & Creative Commons Licence
eISSN: 0128-0945 © Year. The Authors. Published for Malaysia Institute of Planners. This is an open-access article under the CC BY-NC-ND license.
The authors hold the copyright without restrictions and also retain publishing rights without restrictions.