ANALYSIS OF THE FLASH FLOOD EVENT AND RAINFALL DISTRIBUTION PATTERN ON RELAU RIVER BASIN DEVELOPMENT, PENANG, MALAYSIA

Authors

  • Muhammad Hafiz Md Saad East Coast Environmental Research Institute, UNIVERSITI SULTAN ZAINAL ABIDIN, MALAYSIA
  • Mohd Khairul Amri Kamarudin Faculty of Applied Social Sciences, UNIVERSITI SULTAN ZAINAL ABIDIN, MALAYSIA
  • Mohd Ekhwan Toriman Faculty of Social Sciences and Humanities, UNIVERSITI KEBANGSAAN MALAYSIA, MALAYSIA
  • Noorjima Abd Wahab East Coast Environmental Research Institute, UNIVERSITI SULTAN ZAINAL ABIDIN, MALAYSIA
  • Frankie Marcus Ata Faculty of Social Sciences and Humanities, UNIVERSITI KEBANGSAAN MALAYSIA, MALAYSIA
  • Mohd Armi Abu Samah Kulliyyah of Science, INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA
  • Ahmad Shakir Mohd Saudi Institute of Medical Science Technology, UNIVERSITI KUALA LUMPUR, MALAYSIA
  • Sianturi Novdin Manoktong Faculty of Engineering, UNIVERSITAS SIMALUNGUN, NORTH SUMATRA, INDONESIA

DOI:

https://doi.org/10.21837/pm.v21i25.1224

Keywords:

Cross-section, flood, river basin development, river discharge, rainfall

Abstract

Typical disaster flooding and flash floods in Malaysia. Floods occur especially during the wet season within the geographical region area which is especially influenced by the northeast monsoon. So the sampling study was conducted in March 2019 in normal season. Cross-sectional measurements involving the measurement of river width, river depth and velocity were conducted at both sampling times. The main objective of this study was to identify the pattern of rainfall distribution and river discharge rate in the River Basin Relative when the flash flood event occurred. The average seasonal discharge value in the normal Relau River (Upstream) is 0.04 m3s-1, Relau River (Midstream) is 0.57 m3s-1, Relau River (Downstream) is 0.35 m3s-1. Whereas for Ara River (Midstream) is 0.78 m3s-1, Ara River (Downstream) is 0.19 m3s-1) and Kluang River (Upstream) is 0.18 m3s-1. The estimated value for flash flood shows that total water and sewer capacity that occurred during the flash floods was to increase the water level by five meters from the normal season water level with an estimated water velocity of m3s-1for this area. The reading shows the Relau River (Upstream) reading 5.18 m3s-1, the Relau River (Midstream) is m3s-1 the Relau River (Downstream) is 18.20 m3s-1. While for Ara River (Midstream) is 24.53 m3s-1, Ara River (Downstream) is 25.35 m3s-1) and Kluang River (Upstream) is 26.22 m3s-1.

Downloads

Download data is not yet available.

References

Azinuddin, M., Som, A. P. M., Saufi, S. A. M., Zarhari, N. A. A., Amin, W. A. A. W. M., & Shariffuddin, N. S. M. (2022). Investigating overtourism impacts, perceived man-made risk and tourist revisit intention. Planning Malaysia, 20(3), 239-254. DOI: https://doi.org/10.21837/pm.v20i22.1142

Chan, N. W., & Parker, D. J. (1997). Aspek-aspek sosio-ekonomi berkaitan dengan bahaya dan bencana banjir di semenanjung Malaysia. Proceedings of Persidangan Kebangsaan Kajian Sains Sosial, 29-30.

Chan, N.W. (2000) Faktor paling signifikan terhadap keterukan subjektif impak banjir. Dlm Perbandaran dan perancangan persekitaran. Mohd Razali Agus & Fashbir Noor Sidin (pnyt). Kuala Lumpur: Utusan Pub. (ms. 249-261)

Collier, C. G. (2007). Flash flood forecasting: What are the limits of predictability?. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(622), 3-23. DOI: https://doi.org/10.1002/qj.29

Department of Irrigation and Drainage Malaysia (DID). (2000). Urban stormwater management manual for Malaysia.

Elkhrachy, I. (2015). Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18(2), 261-278. DOI: https://doi.org/10.1016/j.ejrs.2015.06.007

Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (Eds.). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139177245

Georgakakos, K. P. (1986). On the design of national, real-time warning systems with capability for site-specific, flash-flood forecasts. Bulletin of the American Meteorological Society, 67(10), 1233-1239. DOI: https://doi.org/10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., ... & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816-821. DOI: https://doi.org/10.1038/nclimate1911

Huang, X., Tan, H., Zhou, J., Yang, T., Benjamin, A., Wen, S. W., ... & Li, X. (2008). Flood hazard in Hunan province of China: an economic loss analysis. Natural Hazards, 47(1), 65-73. DOI: https://doi.org/10.1007/s11069-007-9197-z

Jamil, N. R., Toriman, M. E., Idris, M., & How, N. L. (2012). Analisis ciri-ciri luahan Sungai Chini dan Sungai Paya Merapuh Tasik Chini, Pahang bagi waktu normal, waktu basah dan selepas banjir. e-Bangi, 9(1), 34-47.

Kamarudin, M. K. A., Muhammad, N.S., Saad, M. H. M., Abd, N., Wahab, (2019a). Environmental Awareness Level Among University Students in Malaysia: A Review. International Journal of Engineering & Technology, 7(5S4), 509-511 DOI: https://doi.org/10.14419/ijet.v7i4.34.23575

Kamarudin, M. K. A., Nalado, A. M., Toriman, M. E., Juahir, H., Umar, R., Ismail, A., ... & Saudi, A. S. (2019b). Evolution of river geomorphology to water quality impact using remote sensing and GIS technique. Desalination and Water Treatment, 149, 258-273. DOI: https://doi.org/10.5004/dwt.2019.23838

Kamarudin, M. K. A., Toriman, M. E., Juahir, H., Azid, A., Gasim, M. B., Saudi, A. S. M., Umar, R., Sulaiman, N. H., Ata, F. M., Mustafa, A. D., Amran, M. A., Yusoff, W. A., Azaman, F. (2015b). Assessment of river plan change using RS and GIS technique. Jurnal Teknologi, 76(1), 31-38. DOI: https://doi.org/10.11113/jt.v76.2940

Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Aziz, N. A. A., Azid, A., ... & Sulaiman, W. N. A. (2015a). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319-1334. DOI: https://doi.org/10.1007/s11027-014-9547-6

Malaysian Meteorological Department. (2019). Cuaca di Pulau Pinang. Retrieved from https://weather.com/msMY/weather/monthly/l/b29f1c3fb5f58be7dde46f764e2da5354dee4e851f07516e50bbac763c092bd0

Malaysian Meteorological Department. (2019). Pencerapan Permukaan. Retrieved from http://www.met.gov.my/projection/rain

Mohamed A., Rahim S. A., Aitman D. A., Kamarudin M. K. A. (2016). Analysis of seasonal soil organic carbon content at Bukit Jeriau Forest, Fraser Hill, Pahang. Malaysian Journal of Analytical Sciences, 20(2), 452-460. DOI: https://doi.org/10.17576/mjas-2016-2002-30

Mohd, F. A., Abdul Maulud, K. N., Karim, O. A., Begum, R. A., Awang, N. A., Ahmad, A., Wan Mohamed Azhary, W. A. H., Kamarudin, M. K. A., Jaafar, M., Wan Mohtar, W. H. M. (2019). Comprehensive coastal vulnerability assessment and adaptation for Cherating Pekan coast, Pahang, Malaysia. Ocean & Coastal Management, 182, 104948. DOI: https://doi.org/10.1016/j.ocecoaman.2019.104948

NOAA. (2012). Hydrologic Services Program, definitions and general terminology. National Weather Service Manual 10-950, 5 pp., https://www.nws.noaa.gov/directives/sym/

Novak, D. R. (2017). The $1 billion dollar flood disasters of 2016. Major Weather Impacts of 2016, Seattle, WA, Amer. Meteor. Soc., 2.2A, https://ams.confex.com/ams/97Annual/webprogram/ Paper317351.html.

NWS. (2017). Summary of Natural Hazard Statistics in the United States. NOAA, accessed 15 October 2018, http://www.nws.noaa.gov/os/hazstats/sum17.pdf.

Paul, G. C., Saha, S., & Hembram, T. K. (2019). Application of the GIS-Based Probabilistic Models for Mapping the Flood Susceptibility in Bansloi Sub-basin of Ganga-Bhagirathi River and Their Comparison. Remote Sensing in Earth Systems Sciences, 2(2-3), 120-146. DOI: https://doi.org/10.1007/s41976-019-00018-6

Penang State Government (2019, July 1). Penang Flood Hotspot Area. Retrieved from http://www.data.gov.my/data/ms_MY/dataset?organization=penang-state-government &_organization_limit=0&groups=alam-sekitar

Rasdi, A. L. M., Som, A. P. M., Azinuddin, M., Nasir, M. N. M., & Khan, N. F. A. H. (2022). Local community perspective on responsible tourism and destination sustainability. Planning Malaysia, 20(3), 255-269. DOI: https://doi.org/10.21837/pm.v20i22.1143

Recanatesi, F., Petroselli, A., Ripa, M. N., & Leone, A. (2017). Assessment of stormwater runoff management practices and BMPs under soil sealing: a study case in a peri-urban watershed of the metropolitan area of Rome (Italy). Journal of environmental management, 201, 6-18. DOI: https://doi.org/10.1016/j.jenvman.2017.06.024

Sarhadi, A., Soltani, S., & Modarres, R. (2012). Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. Journal of Hydrology, 458, 68-86. DOI: https://doi.org/10.1016/j.jhydrol.2012.06.039

Saudi, A. S. M., Azid, A., Juahir, H., Toriman, M. E., Amran, M. A., Mustafa, A. D., ... & Saudi, M. M. (2015). Flood risk pattern recognition using integrated chemometric method and artificial neural network: A case study in the Johor River Basin. Jurnal Teknologi, 74(1), 34-56. DOI: https://doi.org/10.11113/jt.v74.3772

Smith, K. (1997). Environmental hazards: assessing risk and reducing disaster. Environment International, 3(23), 422-432.

Spada, E., Sinagra, M., Tucciarelli, T., & Biondi, D. (2017). Unsteady State Water Level Analysis for Discharge Hydrograph Estimation in Rivers with Torrential Regime: The Case Study of the February 2016 Flood Event in the Crati River, South Italy. Water, 9(4), 288-290. DOI: https://doi.org/10.3390/w9040288

Sungip, F. N., Kamarudin, M. K. A., Saad, M. H. M., Abd, N., Wahab, A. P. M. S., Umar, R., & Harith, H. (2018). The Impact of Monsoon Flood Phenomenon on Tourism Sector in Kelantan, Malaysia: A Review. International Journal of Engineering & Technology, 7(4.34), 37-40. DOI: https://doi.org/10.14419/ijet.v7i4.34.23577

Szewrański, S., Kazak, J., Szkaradkiewicz, M., & Sasik, J. (2015). Flood risk factors in suburban area in the context of climate change adaptation policies–Case study of Wroclaw, Poland. Journal of Ecological Engineering, 16(2), 1-15. DOI: https://doi.org/10.12911/22998993/1854

Toriman, M. E., Kamarudin, M. K. A., SA, S. M., Idris, M. H., Jamil, N. R., & Gasim, M. B. (2009). Temporal variability on lowland river sediment properties and yield. American Journal of Environmental Sciences, 5(5), 657-663. DOI: https://doi.org/10.3844/ajessp.2009.657.663

Wahab, N. A., Kamarudin, M. K. A, Toriman, M. E., Juahir, H., Saad, M. H. M., Ata, F.M., Ghazali, A., Hassan, A. R., Abdullah, H., Maulud, K. N., Hanafiah, M. M., Harith, H. (2019). Sedimentation and water quality deterioration problems at Terengganu River basin, Terengganu, Malaysia. Desalination and water Treatment, 149, 228-241. DOI: https://doi.org/10.5004/dwt.2019.23836

Downloads

Published

2023-04-27

How to Cite

Md Saad, M. H., Kamarudin, M. K. A., Toriman, M. E., Abd Wahab, N., Ata, F. M., Abu Samah, M. A., Mohd Saudi, A. S., & Manoktong, S. N. (2023). ANALYSIS OF THE FLASH FLOOD EVENT AND RAINFALL DISTRIBUTION PATTERN ON RELAU RIVER BASIN DEVELOPMENT, PENANG, MALAYSIA. PLANNING MALAYSIA, 21(25). https://doi.org/10.21837/pm.v21i25.1224

Most read articles by the same author(s)

1 2 > >>