APPLICATION OF A HYBRID CELLULAR AUTOMATON-MARKOV MODEL IN LAND USE CHANGE DETECTION AND PREDICTION IN FLOOD-PRONE AREA, JOHOR, MALAYSIA

Authors

  • Suzani Mohamad Department of Environment, Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Zulfa Hanan Ash’aari Department of Environment, Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Mohammad Firuz Ramli Department of Environment, Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Ramdzani Abdullah Department of Environment, Faculty of Forestry and Environment, UNIVERSITI PUTRA MALAYSIA
  • Balqis Mohamed Rehan Department of Civil Engineering, Faculty of Engineering, UNIVERSITI PUTRA MALAYSIA

DOI:

https://doi.org/10.21837/pm.v21i30.1394

Keywords:

Markov chain model, Change simulation, Urban Development, Image classification, Environmental Planning

Abstract

Changes in land use can significantly impact natural resource sustainability, socioeconomic activities, and flood risks. Cellular Automata-Markov model (CA-Markov) is utilized in this study to predict land use changes by modeling the spatial dynamics and transitions of land use categories over time in one of the flood-prone area in Segamat district, Johor. Satellite images obtained from Landsat 5 Thematic Mapper and Satellite Pour I’Observation de la Terre (SPOT) 5, 6, and 7 for years 2006, 2011, and 2016 were utilized to assess the magnitude of the land use change via unsupervised and supervised classification. Additionally, ancillary data such as residential, road, water bodies, and slopes were used as input to forecast future land use. The findings revealed that between 2006 to 2026, there was an increase in built-up areas and mixed agriculture up to 26%. The expansion of built-up areas and mixed agricultures involves the removal of forests, further exacerbating flood risks. This fundamental research can provide valuable insights for effective land management and urban planning.

Downloads

Download data is not yet available.

References

Abba Umar, D., Ramli, M. F., Tukur, A. I., Jamil, N. R., & Zaudi, M. A. (2021). Detection and Prediction of Landuse Change Impact on The Streamflow Regime in Sahelian River Basin, Northwestern Nigeria. H2Open, 4(1), 92–113. https://doi.org/10.2166/h2oj.2021.065 DOI: https://doi.org/10.2166/h2oj.2021.065

Abdulkareem, J.H., Sulaiman, W.N.A., Pradhan, B., & Jamil, N.R. (2018). Relationship Between Design Floods and Land Use Land Cover (LULC) Changes in A Tropical Complex Catchment. Arabian Journal of Geosciences, 11(376), 1-17. https://doi:10.1007/s12517-018-3702-4 DOI: https://doi.org/10.1007/s12517-018-3702-4

Azari, M., Billa, L., & Chan, A. (2022). Multi‑Temporal Analysis of Past and Future Land Cover Change in The Highly Urbanized State of Selangor, Malaysia. Ecological Processes, 11(2), 1-15. https://doi:10.1186/s13717-021-00350-0 DOI: https://doi.org/10.1186/s13717-021-00350-0

Azizi, A., Malakmohamadi, B., & Jafari, H.R. (2016). Land Use and Land Cover Spatiotemporal Dynamic Pattern and Predicting Changes Using Integrated CA-Markov Model. Global Journal of Environmental Science and Management, 2(3), 223-234. https://doi:10.7508/gjesm.2016.03.002

Camara, M., Jamil, N.R.B., Abdullah, A.F.B., & Hashim R.B. (2020). Integrating Cellular Automata Markov Model to Simulate Future Land Use Change of A Tropical Basin. Global Journal of Environmental Science and Management, 6(3), 403-414. https://doi:10.22034/gjesm.2020.03.09

Dangulla, M., Munaf, L.A., & Mohammad, F.R. (2020). Spatio-Temporal Analysis of Land Use/Land Cover Dynamics in Sokoto Metropolis Using Multi-Temporal Satelite Data and Land Change Modeller. Indonesian Journal of Geography, 52(3), 306-316. https://doi:10.22146/ijg.46615 DOI: https://doi.org/10.22146/ijg.46615

Department of Statistics, Malaysia. (2017). E-statistik https://newss.statistics.gov.my/newss-portalx/ep/epLogin.seam?lang=en (accessed on 6 October 2020)

Fisher, J.R., Acosta, E.A., Dennedy-Frank, P.J., Kroeger, T., & Boucher, T.M. (2018). Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing Ecology Conservation. 4, 137–149. https://doi.org/10.1002/rse2.61. DOI: https://doi.org/10.1002/rse2.61

Hassan, Z., Shabbir, R., Ahmad, S.S., Malik, A.H., Aziz, N., Butt, A., & Erum, S. (2016). Dynamics of Land Use and Land Cover Change (LULCC) Using Geospatial Techniques: A Case Study of Islamabad Pakistan. Springerplus, 5(812), 1-11. https://doi:10.1186/s40064-016-2414-z DOI: https://doi.org/10.1186/s40064-016-2414-z

Hu, Y., & Zhang Y. 2020. Spatial–Temporal Dynamics and Driving Factor Analysis of Urban Ecological Land in Zhuhai City, China. Scientific Reports, 10(1), 1–15. https://doi:10.1038/s41598-020-73167-0 DOI: https://doi.org/10.1038/s41598-020-73167-0

Hua, A.K. (2017). Application of CA-Markov Model and Land Use/Land Cover Changes in Malacca River Watershed, Malaysia. Applied Ecology Environmental Research, 15(4), 605-622. http://dx.doi.org/10.15666/aeer/1504_605622 DOI: https://doi.org/10.15666/aeer/1504_605622

Islam, K., Jashimuddin, M., Nath, B., & Nath, T.K. (2018). Land Use Classification and Change Detection by Using Multi-Temporal Remotely Sensed Imagery: The Case of Chunati Wildlife Sanctuary, Bangladesh. Egyptian Journal of Remote Sensing and Space Science, 21(1), 37-47. https://doi: 10.1016/j.ejrs.2016.12.005 DOI: https://doi.org/10.1016/j.ejrs.2016.12.005

Johor State Forestry Department (2006). Summary of the State of Johor Forest Management Plan for the Period between 2006- 2015. https://forestry.johor.gov.my/images/Maklumat-Hutan/MC-and-I/2.Ringkasan-Rancangan-Pengurusan-Hutan-RPH/fmu.pdf (accessed on11 February 2022)

Johor State Town and Country Planning Department (2014). Handbook JPBD. https://jpbd.johor.gov.my/images/jpbd_DokumenTerbitan/Handbook.pdf (accessed on11 February 2022).

Keshtkar, H. & Voigt W. (2016). A Spatiotemporal Analysis of Landscape Change Using an Integrated Markov Chain and Cellular Automata Models. Modeling Earth Systems and Environment, 2(10), 1-13. https://doi:10.1007/s40808-015-0068-4 DOI: https://doi.org/10.1007/s40808-015-0068-4

Khan, S., Qasim, S. & Ambreen, R. (2016). Spatio-Temporal Analysis of Landuse/Landcover Change of District Pishin Using Satellite Imagery and GIS. Journal of Geographic Information System, 8(3), 361-368. https://doi:10.4236/jgis.2016.83031 DOI: https://doi.org/10.4236/jgis.2016.83031

Khwarahm N.R., Qader, S., Ararat K. & Al-Quraishi, A.M.F. (2020). Predicting and Mapping Land Cover/Land Use Changes in Erbil /Iraq Using CA-Markov Synergy Model. Earth Science Informatics, 14(1),1-14. https://doi:10.1007/s12145-020-00541-x DOI: https://doi.org/10.1007/s12145-020-00541-x

Liew, Y. S., Mat Desa, S., Noh, M., Nasir, M., Tan, M. L., Zakaria, N. A. & Chang, C. K. (2021). Assessing the Effectiveness of Mitigation Strategies for Flood Risk Reduction in The Segamat River Basin, Malaysia. Sustainability, 13(6), 1-23. https://doi: 10.3390/su13063286 DOI: https://doi.org/10.3390/su13063286

Liping, C., Yujun, S. & Saeed, S. (2018). Monitoring and Predicting Land Use and Land Cover Changes Using Remote Sensing and GIS Techniques—A Case Study of a Hilly Area, Jiangle, China. PloS One, 13(7), 1-23. https://doi:10.1371/journal.pone.0200493 DOI: https://doi.org/10.1371/journal.pone.0200493

Mathanraj, S., Rusli, N. & Ling, G.H.T. (2021). Applicability of the CA-Markov Model in Land-Use/Land Cover Change Prediction for Urban Sprawling in Batticaloa Municipal Council, Sri Lanka. IOP Conf. Series: Earth and Environmental Science, 620(012015), 1-12. https://doi: 10.1088/1755-1315/620/1/012015 DOI: https://doi.org/10.1088/1755-1315/620/1/012015

Matlhodi, B., Kenabatho, P.K., Parida B.P., & Maphanyane, J.G. (2021). Analysis of the Future Land Use Land Cover Changes in The Gaborone Dam Catchment Using CA-Markov Model: Implications on Water Resources. Remote Sensing, 13(2427), 1-20. https://doi.org/10.3390/rs13132427 DOI: https://doi.org/10.3390/rs13132427

Mosime M.T. & Tesfamichael S.G. (2017). Comparison of SPOT and Landsat Data in Classifying Wetland Vegetation Types. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W2, 2017 37th International Symposium on Remote Sensing of Environment, 8–12 May 2017, Tshwane, South Africa, 131-135. https://doi:10.5194/isprs-archives-XLII-3-W2-131-2017 DOI: https://doi.org/10.5194/isprs-archives-XLII-3-W2-131-2017

Muhadi, N.A., Abdullah, A.F., & Vojinovic, Z. (2017). Estimating Agricultural Losses Using Flood Modeling for Rural Area. MATEC Web of Conferences, 103(04009), 1-8. https://doi.org/10.1051/matecconf/201710304009 DOI: https://doi.org/10.1051/matecconf/201710304009

Muhamed Noordin, N., Abdullah, A., & Azraei Shahbudin, M. (2007). Multicriteria Analysis of Flood Causes in Kuala Lumpur. Planning Malaysia: Journal of the Malaysian Institute of Planners, 5, 17-42. https://doi: 10.21837/pmjournal.v5.i1.56 DOI: https://doi.org/10.21837/pm.v5i1.56

Muhammad, A., Norsida, M. & Farrah Melissa, M. (2018). Impacts of Natural Disasters on Farms and Farmers in Malaysia. Региональные проблемы. 21(3),133–135. https://doi:10.31433/1605-220X-2018-21-3(1)-132-135 DOI: https://doi.org/10.31433/1605-220X-2018-21-3(1)-132-135

Omran, A. & Schwarz-Herion, O. (2020). Deforestation in Malaysia: The Current Practice and the Way Forward. In: Omran A, Schwarz-Herion O, editors. Sustaining Our Environment for Better Future: Challenges and Opportunities, Singapore: Springer; 175-193. https://doi:10.1007/978-981-13-7158-5_11 DOI: https://doi.org/10.1007/978-981-13-7158-5_11

Ponting, J., Kelly, T. J., Verhoef, A., Watts, M. J., & Sizmur, T. (2021). The impact of Increased flooding Occurrence on the Mobility of Potentially Toxic Elements in floodplain Soil–A Review. Science of The Total Environment, 754(142040), 1-61. https:// doi. org/ 10. 1016/j. scito tenv. 2020. 142040 DOI: https://doi.org/10.1016/j.scitotenv.2020.142040

Ren, H., Cai, G., Zhao, G., & Li, Z. (2018). Accuracy Assessment of the GlobeLand30 Dataset in Jiangxi Province. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3, 2018 ISPRS TC III Mid-term Symposium “Developments, Technologies and Applications in Remote Sensing”, 7–10 May, Beijing, China, 42(3),1481–1487. https://doi:10.5194/isprs-archives-XLII-3-1481-2018 DOI: https://doi.org/10.5194/isprs-archives-XLII-3-1481-2018

Reza, M.I.H., Choy, E.A. & Pereira, J.J. (2017). Vulnerabilities of Local People and Migrants Due to Flooding in Malaysia Identifying Gaps for Better Management Living with Floods in a Mobile Southeast Asia: A Political Ecology of Vulnerability, Migration and Environmental Change eds. C Middleton, E Elmhirst and S Chantavanich (London: Routledge), 167-187. https://doi:10.4324/9781315761435-9 DOI: https://doi.org/10.4324/9781315761435-9

Rogger, M., Agnoletti, M., Alaoui, A., Bathurst, J.C., Bodner, G., Borga, M., Chaplot, V., Gallart, F., Glatzel, G., Hall, J., Holden, J., Holko, L., Horn, R., Kiss, A., Kohnov´ a, S., Leitinger, G., Lennartz, B., Parajka, J., Perdig˜ ao, R., Bloschl, ¨ G. (2017). Land Use Change Impacts on Floods at the Catchment Scale: Challenges and Opportunities for Future Research. Water Resources Research, 53 (7), 5209–5219. https://doi.org/10.1002/2017wr020723. DOI: https://doi.org/10.1002/2017WR020723

Sach, A., Wild, A., Hoeun, I., Nicholas Y., Baynard-Smith R., Mohd Hanif K., Muhammad Hazwan M., Mohd Fakhruddin F., & Umi Salaman M. Z. (2018). Mitigation and Adaptation to Floods in Malaysia: A study on Community Perceptions and Responses to Urban Flooding in Segamat’, Monash University and South East Asia Community Observatory, 1- 41. https://www.monash.edu.my/__data/assets/pdf_file/0007/2236516/Flooding-in-Segamat.pdf (accessed on 23 June 2022).

Samat, N., Mahamud, M.A., Tan, M.L., Maghsoodi Tilaki, M.J., & Tew, Y.L. (2020). Modelling Land Cover Changes in Peri-Urban Areas: A Case Study of George Town Conurbation, Malaysia. Land, 9(373),1-16. https://doi.org/10.3390/land9100373 DOI: https://doi.org/10.3390/land9100373

Segamat District Council (2022). RTD segamat 2030 (replacement) for print. http://mpsegamat.gov.my/sites/default/files/mps_4.0_peta_cadangan_keseluruhan_daerah_segamat.pdf (accessed on 11 February 2022)

The Johor Land and Mines Office (2022). Segamat District Profile. https://ptj.johor.gov.my/profil-daerah-segamat/ (accessed on 11 February 2022)

Wan Ibrahim W.Y., & Muhamad Ludin A. N. (2016). Spatiotemporal Land Use and Land Cover Change in Major River Basins in Comprehensive Development Area. Planning Malaysia: Journal of the Malaysian Institute of Planners Special Issue IV, 225 – 242. https://doi:10.21837/pmjournal.v14.i4.160 DOI: https://doi.org/10.21837/pm.v14i4.160

Wang S. W., Munkhnasan L., & Lee W.K., (2021). Land Use and Land Cover Change Detection and Prediction in Bhutan’s High-Altitude City of Thimphu, Using Cellular Automata and Markov Chain. Environmental Challenges, 2(100017), 1-11. https://doi.org/10.1016/j.envc.2020.100017 DOI: https://doi.org/10.1016/j.envc.2020.100017

Yesuph A.Y., Dagnew A.B. 2019. Land Use/Cover Spatiotemporal Dynamics, Driving Forces, and Implications at the Beshillo Catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environmental Systems Research, 8(21),1-30. https://doi: 10.1186/s40068-019-0148-y DOI: https://doi.org/10.1186/s40068-019-0148-y

Zhao, X., Pu, J., Wang, X., Chen, J., Yang, L.E., & Gu, Z. (2018). Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China. Sustainability, 10(4066), 1-17. https://doi.org/10.3390/su10114066 DOI: https://doi.org/10.3390/su10114066

Downloads

Published

2023-11-05

How to Cite

Mohamad, S., Ash’aari, Z. H., Ramli, M. F., Abdullah, R., & Mohamed Rehan, B. (2023). APPLICATION OF A HYBRID CELLULAR AUTOMATON-MARKOV MODEL IN LAND USE CHANGE DETECTION AND PREDICTION IN FLOOD-PRONE AREA, JOHOR, MALAYSIA. PLANNING MALAYSIA, 21(30). https://doi.org/10.21837/pm.v21i30.1394