SPATIOTEMPORAL OF NITROGEN DIOXIDE (NO2) CONCENTRATION IN THE URBAN ENVIRONMENT OF KLANG VALLEY, MALAYSIA

Authors

  • Siti Haslina Mohd Shafie Geography Section, School of Humanities, UNIVERSITI SAINS MALAYSIA
  • Muhammad Wafiy Adli Ramli Geography Section, School of Humanities, UNIVERSITI SAINS MALAYSIA
  • Anisah Lee Abdullah Geography Section, School of Humanities, UNIVERSITI SAINS MALAYSIA

DOI:

https://doi.org/10.21837/pm.v22i33.1559

Keywords:

Air Quality, NO2 Concentration, Spatiotemporal Analysis, Man-Kendall Statistical Analysis, Interpolation Technique GIS, Klang Valley, Malaysia

Abstract

The high concentration of nitrogen dioxide (NO2) directly results in Klang Valley’s air quality deterioration, causing a public health risk. This study was conducted to analyse the daily-averaged and annual concentration of nitrogen dioxide (NO2) on a spatial-temporal scale at five continuous monitoring stations under the Department of Environment (DOE) in Klang Valley, namely, Klang, Shah Alam, Petaling Jaya, Kajang, and Cheras from 2000 to 2009 using Man-Kendall statistical analysis and interpolation technique in Geographic Information System (GIS). The result clearly showed that the Petaling Jaya station was identified as the most polluted compared to other stations, with an average concentration of more than 0.050 ppm every year and reaching the maximum concentration of 0.069 ppm where the mean was 0.030 in 2001. Based on the p-value derived from the Mann-Kendall statistical analysis, the Klang, Petaling Jaya, Shah Alam, and Cheras stations recorded a significant trend with p-values < 0.05 at 0.0001 and 0.020, respectively. The annual concentration of NO2 in all the stations was in the range of 0.015 to 0.04 ppm from 2004 to 2009, compared to 0.005 to 0.01 ppm from 2000 to 2003. The highest annual-averaged NO2 concentration was reported at the Petaling Jaya station between 0.035 and 0.004 ppm for all years except 2007 and 2009 when concentrations were in the 0.03 to 0.035 ppm. Notably, the Petaling Jaya station had the highest annual NO2 concentration, which ranged from 0.025 to 0.04 ppm due to emissions from motor vehicles.  The major pressure on road infrastructure was recognised, mainly a lack of space to accommodate the effect of the maximum density of motor vehicles and traffic, resulting in traffic congestion in the city centre.

Downloads

Download data is not yet available.

References

Abdullah, A., Mohd Saudi, A. S., Shafii, N. Z., Kamarudin, M. K. A., & Muhammad-Sukki, F. (2024). Temporal analysis and predictive modeling of ambient air quality in Hulu Langat district, Selangor, Malaysia: A chemometric approach. Planning Malaysia, 22(30). https://doi.org/10.21837/pm.v22i30.1448 DOI: https://doi.org/10.21837/pm.v22i30.1448

Achakulwisut, P., Brauer, M., Hystad, P., & Anenberg, S. C. (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: Estimates from global datasets. The Lancet Planetary Health, 3(4), 166–178. https:// doi.org/10.1016/S2542-5196(19)30046-4 DOI: https://doi.org/10.1016/S2542-5196(19)30046-4

Atkinson, R. W., Butland, B. K., Anderson, H. R. & Maynard, R. L. (2018). Long-term concentrations of nitrogen dioxide and mortality: A meta-analysis of cohort studies. Epidemiology, 29, 460-472. https://doi.org/10.1097/EDE.0000000000000847 DOI: https://doi.org/10.1097/EDE.0000000000000847

Bajcinovci, B. (2017). Environment quality: Impact from traffic, power plant and land morphology. A case study of Prishtina. Environmental and Climate Technologies, 19, 65-74 DOI: https://doi.org/10.1515/rtuect-2017-0006

Brønnum-Hansen, H., Bender, A. M., Andersen, Z. J., Sørensen, J., Bønløkke, J. H., Boshuizen, H., Becker, T., Diderichsen, F., Loft, S. (2018). Assessment of impact of traffic-related air pollution on morbidity and mortality in Copenhagen Municipality and the health gain of reduced exposure. Environment International, 121, 973-980. https://doi.org/10.1016/j.envint.2018.09.050 DOI: https://doi.org/10.1016/j.envint.2018.09.050

Dehghani, M., et al. (2018). Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicology and Environmental Safety, 155, 133–143. https://doi.org/10.1016/j.ecoenv.2018.02.065 DOI: https://doi.org/10.1016/j.ecoenv.2018.02.065

Delikhoon, M., et al. (2018). Characteristics and health effects of formaldehyde and acetaldehyde in an urban area in Iran. Environmental Pollution, 242, 938–951. https://doi.org/10.1016/j.envpol.2018.07.037 DOI: https://doi.org/10.1016/j.envpol.2018.07.037

DOE. (2020). Population Quick Info. Malaysia: Department of Environment. Google Inc. (2015). Google Earth. Google Inc. (2020). Google Maps

EEA. (2019). Air Quality in Europe 2019 Report. Publications Office of the European Union, European Environment Agency (Luxembourg) 978-92-9480-088-6. https://www.eea.europa.eu/publications/air-quality-in-europe-2019

Eum, K., Kazemiparkouhi, F., Wang, B., Manjourides, J., Pun, V., Pavlu, V. & Suh, H. (2019). Long-term NO2 exposures and cause-specific mortality in American older adults. Environment International, 124, 10-15. https://doi.org/10.1016/j.envint.2018.12.060 DOI: https://doi.org/10.1016/j.envint.2018.12.060

Fenech, S. & Aquilina, N. (2020). Trends in ambient ozone, nitrogen dioxide, and particulate matter concentrations over the Maltese Islands and the corresponding health impacts. Science of the Total Environment, 700, 134527. https://doi.org/10.1016/j.scitotenv.2019.134527 DOI: https://doi.org/10.1016/j.scitotenv.2019.134527

Gadedjisso-Tossou, A., Adjegan, K. I. & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for rainfed cereal yields in Northern Togo, Sci, 3(1):17. DOI:10.3390/sci3010017 DOI: https://doi.org/10.3390/sci3010017

GBD. (2015). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the global burden of disease study 2013. Global burden of disease, The Lancet, 385, 117–171. https://doi.org/10.1016/S0140-6736(14)61682-2 DOI: https://doi.org/10.1016/S0140-6736(14)61682-2

He, M. Z., Kinney, P. L., Li, T. T., Chen, C., Sun, Q. H., Ban, J., Wang, J. N., Liu, S.L., Goldsmith, J., Kioumourtzoglou, M. A. (2020). Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China. Environmental Pollution, 261, 114165. https://doi.org/10.1016/j.envpol.2020.114165 DOI: https://doi.org/10.1016/j.envpol.2020.114165

Hoon Leh, O. L., Ahmad, S., Aiyub, K., & Mohd Jani, Y. (2011). Urban air environmental health indicators: A preliminary set for city of Kuala Lumpur. Planning Malaysia, 9(2). https://doi.org/10.21837/pm.v9i2.86 DOI: https://doi.org/10.21837/pmjournal.v9.i2.86

Huangfu, P. & Atkinson, R. (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International 144, 105998. https://doi.org/10.1016/j.envint.2020.105998 DOI: https://doi.org/10.1016/j.envint.2020.105998

Kendall, M. G. (1975). Rank Correlation Methods. Griffin, London, UK

Khreis, H., Kelly, C., Tate, J., Parslow, R., Lucas, K. & Nieuwenhuijsen, M. (2017). Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environment International, 100, 1-31. https://doi.org/10.1016/j.envint.2016.11.012 DOI: https://doi.org/10.1016/j.envint.2016.11.012

Knibbs, L. D., Cortés de Waterman, A. M., Toelle, B. G., Guo, Y. M., Denison, L., Jalaludin, B., Marks, G. B. & Williams, G. M. (2018). The Australian child health and air pollution study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function. Environment International, 120, 394-403. https://doi.org/10.1016/j.envint.2018.08.025 DOI: https://doi.org/10.1016/j.envint.2018.08.025

Liu, Z., Guan, Q., Luo, H., Wang, N., Pan, N., Yang, L., Xiao, S. & Lin, J. (2019). Development of land use regression model and health risk assessment for NO2 in different functional areas: A case study of Xi’an, China. Atmospheric Environment, 213, 515-525. http://dx.doi.org/10.1016/j.atmosenv.2019.06.044 DOI: https://doi.org/10.1016/j.atmosenv.2019.06.044

Lu, P., Zhang, Y. M., Lin, J. T., Xia, G. X., Zhang, W. Y., Knibbs, L. D., Morgan, G. G., Jalaludin, B., Marks, G., Abramson, M., Li, S. S. & Guo, Y. M. (2020). Multi-city study on air pollution and hospital outpatient visits for asthma in China. Environmental Pollution, 257, 113638. http://dx.doi.org/10.1016/j.envpol.2019.113638 DOI: https://doi.org/10.1016/j.envpol.2019.113638

Mandelmilch, M., Ferenz, M., Mandelmilch, N. & Potchter, O. (2020). Urban spatial patterns and heat exposure in the mediterranean city of Tel Aviv. Atmosphere, 11(9), 963, https://doi.org/10.3390/atmos11090963 DOI: https://doi.org/10.3390/atmos11090963

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13, 245–259 DOI: https://doi.org/10.2307/1907187

MRTD. (2017). Motor Vehicles Statistic. Malaysia Road Transport Department.

Rahman, S. R. A., Ismail, S. N. S., Ramli, M. F., Latif, M. T., Abidin, E. Z. & Praveena, S. M. (2015). The assessment of ambient air pollution trend in Klang Valley, Malaysia. World Environment, 5(1),1–11. doi:10.5923/j.env.20150501.01

Rosni, N. A., Mohd Noor, N. & Abdullah, A. (2016). Managing urbanisation and urban sprawl in Malaysia by using remote sensing and GIS applications. Planning Malaysia: Journal of the Malaysian Institute of Planners, 4, 17–30. DOI: https://doi.org/10.21837/pm.v14i4.145

San, R., Pérez, J. L. & Gonzalez-barras, R. M. (2021). Assessment of mesoscale and microscale simulations of a NO2 episode supported by traffic modelling at microscopic level. Science of the Total Environment, 752(2), 141992. doi:10.1016/j.scitotenv.2020.141992 DOI: https://doi.org/10.1016/j.scitotenv.2020.141992

WDI. (2017). World Development Indicators. The World Bank, Washington, DC, USA

WHO. (2014). 7 Million Premature Deaths Annually Linked to Air Pollution. World Health Organization. https://www.who.int/news/item/25-03-2014-7-million-premature-deaths-annually-linked-to-air-pollution

WHO. (2018a). Air Pollution and Child Health: Prescribing Clean Air. World Health Organization: https://www.who.int/ceh/publications/air-pollution-child- health/en/.

World Bank. (2016). The Cost of Air Pollution: Strengthening the Economic Case for Action. World Bank Group, Washington, D.C. http://hdl.handle.net/10986/25013

Downloads

Published

2024-08-26

How to Cite

Mohd Shafie, S. H., Adli Ramli, M. W., & Lee Abdullah, A. (2024). SPATIOTEMPORAL OF NITROGEN DIOXIDE (NO2) CONCENTRATION IN THE URBAN ENVIRONMENT OF KLANG VALLEY, MALAYSIA. PLANNING MALAYSIA, 22(33). https://doi.org/10.21837/pm.v22i33.1559